RESUMO
The mortality of COVID-19 patients in the intensive care unit (ICU) is influenced by their state at admission. We aimed to model COVID-19 acute respiratory distress syndrome state transitions from ICU admission to day 60 outcome and to evaluate possible prognostic factors. We analyzed a prospective French database that includes critically ill COVID-19 patients. A six-state multistate model was built and 17 transitions were analyzed either using a non-parametric approach or a Cox proportional hazard model. Corticosteroids and IL-antagonists (tocilizumab and anakinra) effects were evaluated using G-computation. We included 382 patients in the analysis: 243 patients were admitted to the ICU with non-invasive ventilation, 116 with invasive mechanical ventilation, and 23 with extracorporeal membrane oxygenation. The predicted 60-day mortality was 25.9% (95% CI: 21.8%-30.0%), 44.7% (95% CI: 48.8%-50.6%), and 59.2% (95% CI: 49.4%-69.0%) for a patient admitted in these three states, respectively. Corticosteroids decreased the risk of being invasively ventilated (hazard ratio (HR) 0.59, 95% CI: 0.39-0.90) and IL-antagonists increased the probability of being successfully extubated (HR 1.8, 95% CI: 1.02-3.17). Antiviral drugs did not impact any transition. In conclusion, we observed that the day-60 outcome in COVID-19 patients is highly dependent on the first ventilation state upon ICU admission. Moreover, we illustrated that corticosteroid and IL-antagonists may influence the intubation duration.
RESUMO
BACKGROUND: Outcome of very elderly patients admitted in intensive care unit (ICU) was most often reported for octogenarians. ICU admission demands for nonagenarians are increasing. The primary objective was to compare outcome and intensity of treatment of octogenarians and nonagenarians. METHODS: We performed an observational study in 12 ICUs of the Outcomerea™ network which prospectively upload data into the Outcomerea™ database. Patients >90 years old (case patients) were matched with patients 80-90 years old (control patients). Matching criteria were severity of illness at admission, center, and year of admission. RESULTS: A total of 2419 patients aged 80 or older and admitted from September 1997 to September 2013 were included. Among them, 179 (7.9 %) were >90 years old. Matching was performed for 176 nonagenarian patients. Compared with control patients, case patients were more often hospitalized for unscheduled surgery [54 (30.7 %) vs. 42 (23.9 %), p < 0.01] and had less often arterial monitoring for blood pressure [37 (21 %) vs. 53 (30.1 %), p = 0.04] and renal replacement therapy [5 (2.8 %) vs. 14 (8 %), p = 0.05] than control patients. ICU [44 (25 %) vs. 36 (20.5 %), p = 0.28] or hospital mortality [70 (39.8 %) vs. 64 (36.4 %), p = 0.46] and limitation of life-sustaining therapies were not significantly different in case versus control patients, respectively. Only 16/176 (14 %) of case patients were transferred to a geriatric unit. CONCLUSION: This multicenter study reported that nonagenarians represented a small fraction of ICU patients. When admitted, these highly selected patients received similar life-sustaining treatments, except RRT, than octogenarians. ICU and hospital mortality were similar between the two groups.
RESUMO
INTRODUCTION: In this study, we aimed to assess the association between acute kidney injury (AKI) and mortality in critically ill patients using an original competing risks approach. METHODS: Unselected patients admitted between 1997 and 2009 to 13 French medical or surgical intensive care units were included in this observational cohort study. AKI was defined according to the RIFLE criteria. The following data were recorded: baseline characteristics, daily serum creatinine level, daily Sequential Organ Failure Assessment (SOFA) score, vital status at hospital discharge and length of hospital stay. Patients were classified according to the maximum RIFLE class reached during their ICU stay. The association of AKI with hospital mortality with "discharge alive" considered as a competing event was assessed according to the Fine and Gray model. RESULTS: Of the 8,639 study patients, 32.9% had AKI, of whom 19.1% received renal replacement therapy. Patients with AKI had higher crude mortality rates and longer lengths of hospital stay than patients without AKI. In the Fine and Gray model, independent risk factors for hospital mortality were the RIFLE classes Risk (sub-hazard ratio (SHR) 1.58 and 95% confidence interval (95% CI) 1.32 to 1.88; P < 0.0001), Injury (SHR 3.99 and 95% CI 3.43 to 4.65; P < 0.0001) and Failure (SHR 4.12 and 95% CI 3.55 to 4.79; P < 0.0001); nonrenal SOFA score (SHR 1.19 per point and 95% CI 1.18 to 1.21; P < 0.0001); McCabe class 3 (SHR 2.71 and 95% CI 2.34 to 3.15; P < 0.0001); and respiratory failure (SHR 3.08 and 95% CI 1.36 to 7.01; P < 0.01). CONCLUSIONS: By using a competing risks approach, we confirm in this study that AKI affecting critically ill patients is associated with increased in-hospital mortality.