Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
PLoS Genet ; 19(4): e1010710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068109

RESUMO

Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in ß-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS ß-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS ß-cells. Consistent with reduced ER chaperones levels, PWS INS-1 ß-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS ß-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic ß-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and ß-cell secretory pathway function.


Assuntos
Síndrome de Prader-Willi , Camundongos , Animais , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Secreção de Insulina/genética , Chaperona BiP do Retículo Endoplasmático , Regulação para Baixo , Proteômica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Insulina/genética , Insulina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo
2.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055427

RESUMO

Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 µM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.


Assuntos
Fígado/metabolismo , Fenilalanina Hidroxilase/genética , Fenilalanina/genética , Fenilcetonúrias/genética , Adolescente , Adulto , Animais , Sistemas CRISPR-Cas/genética , Dieta , Modelos Animais de Doenças , Edição de Genes , Humanos , Fígado/efeitos dos fármacos , Fenótipo , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Suínos
3.
PLoS One ; 14(6): e0218412, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31220119

RESUMO

The Consortium for Mouse Cell Line Authentication was formed to validate Short Tandem Repeat (STR) markers for intraspecies identification of mouse cell lines. The STR profiling method is a multiplex polymerase chain reaction (PCR) assay comprised of primers targeting 19 mouse STR markers and two human STR markers (for interspecies contamination screening). The goals of the Consortium were to perform an interlaboratory study to-(1) validate the mouse STR markers to uniquely identify mouse cell lines (intraspecies identification), (2) to provide a public database of mouse cell lines with the National Institute of Standards and Technology (NIST)-validated mouse STR profiles, and (3) to publish the results of the interlaboratory study. The interlaboratory study was an international effort that consisted of 12 participating laboratories representing institutions from academia, industry, biological resource centers, and government. The study was based on 50 of the most commonly used mouse cell lines obtained from the American Type Culture Collection (ATCC). Of the 50 mouse cell lines, 18 had unique STR profiles that were 100% concordant (match) among all Consortium laboratory members, and the remaining 32 cell lines had discordance that was resolved readily and led to improvement of the assay. The discordance was due to low signal and interpretation issues involving artifacts and genotyping errors. Although the total number of discordant STR profiles was relatively high in this study, the percent of labs agreeing on allele calls among the discordant samples was above 92%. The STR profiles, including electropherogram images, for NIST-validated mouse cell lines will be published on the NCBI BioSample Database (https://www.ncbi.nlm.nih.gov/biosample/). Overall, the interlaboratory study showed that the multiplex PCR method using 18 of the 19 mouse STR markers is capable of discriminating at the intraspecies level between mouse cell lines. Further studies are ongoing to refine the assay including (1) development of an allelic ladder for improving the accuracy of allele calling and (2) integration of stutter filters to identify true stutter.


Assuntos
Genótipo , Técnicas de Genotipagem/métodos , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Alelos , Animais , Linhagem Celular , Humanos , Camundongos
4.
Cell Rep ; 25(5): 1332-1345.e5, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380422

RESUMO

Cell lines are important tools for biological and preclinical investigation, and establishing their relationship to genomic alterations in tumors could accelerate functional and therapeutic discoveries. We conducted integrated analyses of genomic and transcriptomic profiles of 15 human papillomavirus (HPV)-negative and 11 HPV-positive head and neck squamous cell carcinoma (HNSCC) lines to compare with 279 tumors from The Cancer Genome Atlas (TCGA). We identified recurrent amplifications on chromosomes 3q22-29, 5p15, 11q13/22, and 8p11 that drive increased expression of more than 100 genes in cell lines and tumors. These alterations, together with loss or mutations of tumor suppressor genes, converge on important signaling pathways, recapitulating the genomic landscape of aggressive HNSCCs. Among these, concurrent 3q26.3 amplification and TP53 mutation in most HPV(-) cell lines reflect tumors with worse survival. Our findings elucidate and validate genomic alterations underpinning numerous discoveries made with HNSCC lines and provide valuable models for future studies.


Assuntos
Genoma , Neoplasias de Cabeça e Pescoço/genética , Transcriptoma/genética , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Mutação/genética , Invasividade Neoplásica , Papillomaviridae/patogenicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Haematologica ; 103(10): 1688-1697, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29954930

RESUMO

The immunomodulatory drugs, lenalidomide and pomalidomide yield high response rates in multiple myeloma patients, but are associated with a high rate of thrombocytopenia and increased risk of secondary hematologic malignancies. Here, we demonstrate that the immunomodulatory drugs induce self-renewal of hematopoietic progenitors and upregulate megakaryocytic colonies by inhibiting apoptosis and increasing proliferation of early megakaryocytic progenitors via down-regulation of IKZF1. In this process, the immunomodulatory drugs degrade IKZF1 and subsequently down-regulate its binding partner, GATA1. This results in the decrease of GATA1 targets such as ZFPM1 and NFE2, leading to expansion of megakaryocytic progenitors with concomitant inhibition of maturation of megakaryocytes. The down-regulation of GATA1 further decreases CCND1 and increases CDKN2A expression. Overexpression of GATA1 abrogated the effects of the immunomodulatory drugs and restored maturation of megakaryocytic progenitors. Our data not only provide the mechanism for the immunomodulatory drugs induced thrombocytopenia but also help to explain the higher risk of secondary malignancies and long-term cytopenia induced by enhanced cell cycling and subsequent exhaustion of the stem cell pool.


Assuntos
Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Fator de Transcrição Ikaros/biossíntese , Fatores Imunológicos/farmacologia , Megacariócitos/metabolismo , Feminino , Células-Tronco Hematopoéticas/citologia , Humanos , Masculino , Megacariócitos/citologia
6.
Genes Chromosomes Cancer ; 57(8): 430-433, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29532557

RESUMO

Tumor genome sequencing has become an invaluable resource in determining targets for new therapies. In this report, we describe the case of a patient with metastatic urothelial carcinoma with sarcomatoid features. Sarcomatoid differentiation is a rare histologic subtype that confers a more aggressive course. The first-line treatment for patients with urothelial carcinoma is platinum-based chemotherapy. Next generation tumor sequencing performed using the FoundationOne assay revealed loss of one NF2 allele and an unbalanced der(22)t(10;22)(p11.22;q12.2) chromosomal rearrangement involving the other NF2 allele, resulting in truncation and predicted loss of function. Fluorescence in situ hybridization (FISH) analysis confirmed the presence of one NF2 signal. NF2 mutations have been found in a variety of cancers and result in activation of the mTOR pathway. As such, the use of mTOR inhibitors, such as everolimus are thought to be particularly effective in the case of NF2 loss. Our patient had a dramatic response to first-line chemotherapy, but unfortunately experienced subsequent progression of his cancer and could not tolerate everolimus. Although our patient's tumor demonstrated unique acquired genetic features including both loss of heterozygosity and truncation of the NF2 locus, he still achieved a meaningful response to platinum-based chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Genes da Neurofibromatose 2 , Neurofibromatose 2/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Idoso , Biomarcadores Farmacológicos , Aberrações Cromossômicas , Humanos , Masculino , Compostos Organoplatínicos/administração & dosagem
7.
Head Neck ; 39(5): 840-852, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28236344

RESUMO

BACKGROUND: Human papillomavirus (HPV)-positive oropharyngeal cancer is generally associated with excellent response to therapy, but some HPV-positive tumors progress despite aggressive therapy. The purpose of this study was to evaluate viral oncogene expression and viral integration sites in HPV16- and HPV18-positive squamous cell carcinoma lines. METHODS: E6/E7 alternate transcripts were assessed by reverse transcriptase-polymerase chain reaction (RT-PCR). Detection of integrated papillomavirus sequences (DIPS-PCR) and sequencing identified viral insertion sites and affected host genes. Cellular gene expression was assessed across viral integration sites. RESULTS: All HPV-positive cell lines expressed alternate HPVE6/E7 splicing indicative of active viral oncogenesis. HPV integration occurred within cancer-related genes TP63, DCC, JAK1, TERT, ATR, ETV6, PGR, PTPRN2, and TMEM237 in 8 head and neck squamous cell carcinoma (HNSCC) lines but UM-SCC-105 and UM-GCC-1 had only intergenic integration. CONCLUSION: HPV integration into cancer-related genes occurred in 7 of 9 HPV-positive cell lines and of these 6 were from tumors that progressed. HPV integration into cancer-related genes may be a secondary carcinogenic driver in HPV-driven tumors. © 2017 Wiley Periodicals, Inc. Head Neck 39: 840-852, 2017.


Assuntos
Carcinoma de Células Escamosas/virologia , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16/fisiologia , Papillomavirus Humano 18/fisiologia , Integração Viral/fisiologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Proteínas Oncogênicas Virais/metabolismo
8.
Appl Immunohistochem Mol Morphol ; 25(3): 168-177, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26808135

RESUMO

INTRODUCTION: Sarcomas are heterogeneous, and their treatment and prognosis are driven by the morphologic subtype and the clinical stage. Classic cytogenetics and fluorescence in situ hybridization (FISH) analysis play an important role in their diagnostic work up. MATERIALS AND METHODS: Forty-six cases of soft-tissue sarcoma were reviewed that underwent karyotyping and simultaneous FISH analysis at initial diagnosis. They included 10 dedifferentiated liposarcomas, 10 myxoid liposarcomas, and 14 synovial sarcomas. Six tumors were investigated for EWSR1 rearrangement. Six high-grade miscellaneous sarcomas were also examined. RESULTS: The dedifferentiated liposarcoma had complex karyotypes and MDM2 amplification by FISH, and of these, 5 tumors with myxoid changes also had complex signals for DDIT3. All but 4 myxoid liposarcomas had complex karyotypes, in addition to the characteristic translocation. FISH analysis displayed DD1T3 rearrangement. All synovial sarcomas except 1 recurrence had a t(X;18) translocation by karyotyping and FISH. The EWSR1 rearrangement was present in all extraskeletal myxoid chondrosarcomas, angiomatoid fibrous histiocytoma, atypical Ewing sarcoma, and a clear-cell sarcoma, all of which had characteristic karyotypes. Seven high-grade sarcomas had no specific karyotype or rearrangements for DDIT3, SS18, and EWSR1 by FISH. CONCLUSIONS: There is good correlation between karyotyping and FISH. Complex FISH signals found in dedifferentiated liposarcomas may be related to an increased chromosome 12 copy number and ploidy. Karyotyping is an important baseline standard for the quality assurance of newly developed FISH probes. It also provides a global view of chromosomal changes and the opportunity to investigate the role of other genetic alterations and potential therapeutic targets.


Assuntos
Neoplasias Lipomatosas/patologia , Sarcoma Sinovial/patologia , Sarcoma/genética , Humanos , Hibridização in Situ Fluorescente , Neoplasias Lipomatosas/genética , Estudos Retrospectivos , Sarcoma/patologia , Sarcoma Sinovial/genética
9.
Carcinogenesis ; 38(2): 218-229, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28025390

RESUMO

The landscape of HPV infection in racial/ethnic subgroups of head and neck cancer (HNC) patients has not been evaluated carefully. In this study, a meta-analysis examined the prevalence of HPV in HNC patients of African ancestry. Additionally, a pooled analysis of subject-level data was also performed to investigate HPV prevalence and patterns of p16 (CDNK2A) expression amongst different racial groups. Eighteen publications (N = 798 Black HNC patients) were examined in the meta-analysis, and the pooled analysis included 29 datasets comprised of 3,129 HNC patients of diverse racial/ethnic background. The meta-analysis revealed that the prevalence of HPV16 was higher among Blacks with oropharyngeal cancer than Blacks with non-oropharyngeal cancer. However, there was great heterogeneity observed among studies (Q test P<0.0001). In the pooled analysis, after adjusting for each study, year of diagnosis, age, gender and smoking status, the prevalence of HPV16/18 in oropharyngeal cancer patients was highest in Whites (61.1%), followed by 58.0% in Blacks and 25.2% in Asians (P<0.0001). There was no statistically significant difference in HPV16/18 prevalence in non-oropharyngeal cancer by race (P=0.682). With regard to the pattern of HPV16/18 status and p16 expression, White patients had the highest proportion of HPV16/18+/p16+ oropharyngeal cancer (52.3%), while Asians and Blacks had significantly lower proportions (23.0% and 22.6%, respectively) [P <0.0001]. Our findings suggest that the pattern of HPV16/18 status and p16 expression in oropharyngeal cancer appears to differ by race and this may contribute to survival disparities.

10.
Exp Cell Res ; 348(1): 75-86, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27619333

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumor cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66- is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Separação Celular , Instabilidade Cromossômica , Células Clonais , Células Alimentadoras/citologia , Feminino , Imunofluorescência , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço
11.
Genes Chromosomes Cancer ; 55(9): 694-709, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27123539

RESUMO

Oral squamous cell carcinoma (OSCC) is a serious public health problem caused primarily by smoking and alcohol consumption or human papillomavirus. The cancer stem cell (CSC) theory posits that CSCs show unique characteristics, including self-renewal and therapeutic resistance. Examining biomarkers and other features of CSCs is critical to better understanding their biology. To this end, the results show that cellular SOX2 immunostaining correlates with other CSC biomarkers in OSCC cell lines and marks the rare CSC population. To assess whether CSC division patterns are symmetrical, resulting in two CSC, or asymmetrical, leading to one CSC and one cancer cell, cell size and fluorescence intensity of mitotic cells stained with SOX2 were analyzed. Asymmetrical SOX2 distribution in ≈25% of the mitoses analyzed was detected. Chromosomal instability, some of which is caused by chromosome segregation defects (CSDs), is a feature of cancer cells that leads to altered gene copy numbers. We compare chromosomal instability (as measured by CSDs) between CSCs (SOX2+) and non-CSCs (SOX2-) from the same OSCC cell lines. CSDs were more common in non-CSCs (SOX2-) than CSCs (SOX2+) and in symmetrical CSC (SOX2+) mitotic pairs than asymmetrical CSC (SOX2+/SOX2-) mitotic pairs. CSCs showed fewer and different types of CSDs after ionizing radiation treatment than non-CSCs. Overall, these data are the first to demonstrate both symmetrical and asymmetrical cell divisions with CSDs in OSCC CSC. Further, the results suggest that CSCs may undergo altered behavior, including therapeutic resistance as a result of chromosomal instability due to chromosome segregation defects. © 2016 Wiley Periodicals, Inc.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Divisão Celular/genética , Segregação de Cromossomos/genética , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Divisão Celular/efeitos da radiação , Segregação de Cromossomos/efeitos da radiação , Imunofluorescência , Humanos , Raios Infravermelhos , Neoplasias Bucais/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Fatores de Transcrição SOXB1/metabolismo , Células Tumorais Cultivadas
12.
Cytogenet Genome Res ; 150(3-4): 242-252, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28214896

RESUMO

We present a comprehensive comparison of PAX5,IKZF1, and CDKN2A/B abnormalities in 21 B-cell precursor acute lymphoblastic leukemia (B-ALL) patients studied by aCGH and gene-specific FISH assays. In our cohort of B-ALL patients, alterations of IKZF1, PAX5, and CDKN2A/B were detected by aCGH analysis in 43, 52, and 57% of samples, respectively. Deletions of IKZF1 were present in 9 samples, including 5 cases positive for both PAX5 and IKZF1 deletions, implying digenic impairment. Furthermore, all cases with IKZF1 deletions also had additional genomic alterations, including BCR-ABL1 gene fusions, PAX5 deletions, CDKN2A/B deletions, and FLT3 amplification. Deletions of CDKN2A/B represented the most frequent abnormalities in our group of patients. Our study demonstrates the high incidence of PAX5, IKZF1, and CDKN2A/B alterations in B-ALL detected by aCGH analysis. Due to the small size and variability in the deletion breakpoints, FISH studies showed false-negative results in 10, 40, and 28% of the samples tested for the IKZF1,PAX5, and CDKN2A/B gene deletions, respectively. The PAX5 and IKZF1 abnormalities are highly specific to B-ALL and can be used as diagnostic markers. Moreover, IKZF1 alterations frequently coexist with a BCR-ABL gene fusion. Our study revealed multiple additional B-ALL-specific genomic alterations and showed that aCGH is a more sensitive method than FISH, allowing whole genome profiling and identification of aberrations of diagnostic and prognostic significance in patients with B-ALL.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/genética , Genes p16 , Fator de Transcrição Ikaros/genética , Leucemia de Células B/genética , Fator de Transcrição PAX5/genética , Doença Aguda , Adolescente , Adulto , Idoso , Criança , Hibridização Genômica Comparativa , Deleção de Genes , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Pessoa de Meia-Idade , Adulto Jovem
13.
Oncotarget ; 6(22): 18845-62, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26299921

RESUMO

PURPOSE: To evaluate the clinical utility, diagnostic yield and rationale of integrating microarray analysis in the clinical diagnosis of hematological malignancies in comparison with classical chromosome karyotyping/fluorescence in situ hybridization (FISH). METHODS: G-banded chromosome analysis, FISH and microarray studies using customized CGH and CGH+SNP designs were performed on 27 samples from patients with hematological malignancies. A comprehensive comparison of the results obtained by three methods was conducted to evaluate benefits and limitations of these techniques for clinical diagnosis. RESULTS: Overall, 89.7% of chromosomal abnormalities identified by karyotyping/FISH studies were also detectable by microarray. Among 183 acquired copy number alterations (CNAs) identified by microarray, 94 were additional findings revealed in 14 cases (52%), and at least 30% of CNAs were in genomic regions of diagnostic/prognostic significance. Approximately 30% of novel alterations detected by microarray were >20 Mb in size. Balanced abnormalities were not detected by microarray; however, of the 19 apparently "balanced" rearrangements, 55% (6/11) of recurrent and 13% (1/8) of non-recurrent translocations had alterations at the breakpoints discovered by microarray. CONCLUSION: Microarray technology enables accurate, cost-effective and time-efficient whole-genome analysis at a resolution significantly higher than that of conventional karyotyping and FISH. Array-CGH showed advantage in identification of cryptic imbalances and detection of clonal aberrations in population of non-dividing cancer cells and samples with poor chromosome morphology. The integration of microarray analysis into the cytogenetic diagnosis of hematologic malignancies has the potential to improve patient management by providing clinicians with additional disease specific and potentially clinically actionable genomic alterations.


Assuntos
Análise Citogenética/métodos , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Aberrações Cromossômicas , Bandeamento Cromossômico/métodos , Hibridização Genômica Comparativa/métodos , Análise Citogenética/normas , Variações do Número de Cópias de DNA , Humanos , Hibridização in Situ Fluorescente/métodos , Cariotipagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único , Translocação Genética
15.
Int J Cancer ; 136(5): E207-18, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082736

RESUMO

HPV-related HNSCC generally have a better prognosis than HPV-negative HNSCC. However, a subgroup of HPV-positive tumors with poor prognosis has been recognized, particularly related to smoking, EGFR overexpression and chromosomal instability. Viral integration into the host genome might contribute to carcinogenesis, as is shown for cervical carcinomas. Therefore, all HPV16-positive HNSCC cell lines currently available have been carefully analyzed for viral and host genome parameters. The viral integration status, viral load, viral gene expression and the presence of aneusomies was evaluated in the cell lines UD-SCC-2, UM-SCC-047, UM-SCC-104, UPCI:SCC090, UPCI:SCC152, UPCI:SCC154 and 93VU147T. HPV integration was examined using FISH, APOT-PCR and DIPS-PCR. Viral load and the expression of the viral genes E2, E6 and E7 were determined via quantitative PCR. All cell lines showed integration-specific staining patterns and signals indicating transcriptional activity using FISH. APOT- and DIPS-PCR identified integration-derived fusion products in six cell lines and only episomal products for UM-SCC-104. Despite the observed differences in viral load and the number of viral integration sites, this did not relate to the identified viral oncogene expression. Furthermore, cell lines exhibited EGFR expression and aneusomy (except UPCI:SCC154). In conclusion, all HPV16-positive HNSCC cell lines showed integrated and/or episomal viral DNA that is transcriptionally active, although viral oncogene expression was independent of viral copy number and the number of viral integration sites. Because these cell lines also contain EGFR expression and aneusomy, which are parameters of poor prognosis, they should be considered suitable model systems for the development of new antiviral therapies.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Papillomavirus Humano 16/genética , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/genética , Carga Viral , Integração Viral/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , DNA Viral/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Papillomavirus Humano 16/isolamento & purificação , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Reação em Cadeia da Polimerase , Células Tumorais Cultivadas
16.
Genes Chromosomes Cancer ; 53(12): 972-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25183546

RESUMO

Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.


Assuntos
Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Aberrações Cromossômicas , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço
18.
Genes Chromosomes Cancer ; 53(2): 129-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24327542

RESUMO

Oral squamous cell carcinoma (OSCC), a subset of head and neck squamous cell carcinoma (HNSCC), is the eighth most common cancer in the U.S.. Amplification of chromosomal band 11q13 and its association with poor prognosis has been well established in OSCC. The first step in the breakage-fusion-bridge (BFB) cycle leading to 11q13 amplification involves breakage and loss of distal 11q. Distal 11q loss marked by copy number loss of the ATM gene is observed in 25% of all Cancer Genome Atlas (TCGA) tumors, including 48% of HNSCC. We showed previously that copy number loss of distal 11q is associated with decreased sensitivity (increased resistance) to ionizing radiation (IR) in OSCC cell lines. We hypothesized that this radioresistance phenotype associated with ATM copy number loss results from upregulation of the compensatory ATR-CHEK1 pathway, and that knocking down the ATR-CHEK1 pathway increases the sensitivity to IR of OSCC cells with distal 11q loss. Clonogenic survival assays confirmed the association between reduced sensitivity to IR in OSCC cell lines and distal 11q loss. Gene and protein expression studies revealed upregulation of the ATR-CHEK1 pathway and flow cytometry showed G2 M checkpoint arrest after IR treatment of cell lines with distal 11q loss. Targeted knockdown of the ATR-CHEK1 pathway using CHEK1 or ATR siRNA or a CHEK1 small molecule inhibitor (SMI, PF-00477736) resulted in increased sensitivity of the tumor cells to IR. Our results suggest that distal 11q loss is a useful biomarker in OSCC for radioresistance that can be reversed by ATR-CHEK1 pathway inhibition.


Assuntos
Carcinoma de Células Escamosas/genética , Cromossomos Humanos Par 11/genética , Neoplasias Bucais/genética , Proteínas Quinases/genética , Tolerância a Radiação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral/efeitos da radiação , Quinase 1 do Ponto de Checagem , Deleção Cromossômica , Segregação de Cromossomos , Dano ao DNA , Técnicas de Silenciamento de Genes , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Neoplasias Bucais/radioterapia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais , Regulação para Cima
19.
Genes Chromosomes Cancer ; 53(1): 25-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24142626

RESUMO

The ATR-CHEK1 pathway is upregulated and overactivated in Ataxia Telangiectasia (AT) cells, which lack functional ATM protein. Loss of ATM in AT confers radiosensitivity, although ATR-CHEK1 pathway overactivation compensates, leads to prolonged G(2) arrest after treatment with ionizing radiation (IR), and partially reverses the radiosensitivity. We observed similar upregulation of the ATR-CHEK1 pathway in a subset of oral squamous cell carcinoma (OSCC) cell lines with ATM loss. In the present study, we report copy number gain, amplification, or translocation of the ATR gene in 8 of 20 OSCC cell lines by FISH; whereas the CHEK1 gene showed copy number loss in 12 of 20 cell lines by FISH. Quantitative PCR showed overexpression of both ATR and CHEK1 in 7 of 11 representative OSCC cell lines. Inhibition of ATR or CHEK1 with their respective siRNAs resulted in increased sensitivity of OSCC cell lines to IR by the colony survival assay. siRNA-mediated ATR or CHEK1 knockdown led to loss of G(2) cell cycle accumulation and an increased sub-G(0) apoptotic cell population by flow cytometric analysis. In conclusion, the ATR-CHEK1 pathway is upregulated in a subset of OSCC with distal 11q loss and loss of the G(1) phase cell cycle checkpoint. The upregulated ATR-CHEK1 pathway appears to protect OSCC cells from mitotic catastrophe by enhancing the G(2) checkpoint. Knockdown of ATR and/or CHEK1 increases the sensitivity of OSCC cells to IR. These findings suggest that inhibition of the upregulated ATR-CHEK1 pathway may enhance the efficacy of ionizing radiation treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Bucais/genética , Proteínas Quinases/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 3/genética , Dano ao DNA/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Dosagem de Genes , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Bucais/metabolismo , Proteínas Quinases/metabolismo , Tolerância a Radiação , Transdução de Sinais , Translocação Genética , Regulação para Cima
20.
Nat Commun ; 4: 2174, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23873265

RESUMO

Mechanisms underlying the reprogramming process of induced pluripotent stem cells remain poorly defined. Like tumorigenesis, generation of induced pluripotent stem cells was shown to be suppressed by the Trp53 (p53) pathway, at least in part via p21Cdkn1a (p21)-mediated cell cycle arrest. Here we examine the role of PUMA, a pro-apoptotic mediator of p53, during somatic reprogramming in comparison to p21 in the p53 pathway. Using mouse strains deficient in these molecules, we demonstrate that PUMA is an independent mediator of the negative effect of p53 on induced pluripotent stem cell induction. PUMA deficiency leads to a better survival rate associated with reduced DNA damage and fewer chromosomal aberrations in induced pluripotent stem cells, whereas loss of p21 or p53 results in an opposite outcome. Given these new findings, PUMA may serve as a distinct and more desirable target in the p53 pathway for induced pluripotent stem cell generation, thereby having important implications for potential therapeutic applications of induced pluripotent stem cells.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas Reguladoras de Apoptose/deficiência , Biomarcadores/metabolismo , Ciclo Celular/genética , Diferenciação Celular , Linhagem da Célula/genética , Aberrações Cromossômicas , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Dano ao DNA , Embrião de Mamíferos , Feminino , Fibroblastos/citologia , Deleção de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Proteína Supressora de Tumor p53/deficiência , Proteínas Supressoras de Tumor/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA