Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Transl Psychiatry ; 14(1): 420, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39368996

RESUMO

Alzheimer's disease (AD) is associated with heterogeneous atrophy patterns. We employed a semi-supervised representation learning technique known as Surreal-GAN, through which we identified two latent dimensional representations of brain atrophy in symptomatic mild cognitive impairment (MCI) and AD patients: the "diffuse-AD" (R1) dimension shows widespread brain atrophy, and the "MTL-AD" (R2) dimension displays focal medial temporal lobe (MTL) atrophy. Critically, only R2 was associated with widely known sporadic AD genetic risk factors (e.g., APOE ε4) in MCI and AD patients at baseline. We then independently detected the presence of the two dimensions in the early stages by deploying the trained model in the general population and two cognitively unimpaired cohorts of asymptomatic participants. In the general population, genome-wide association studies found 77 genes unrelated to APOE differentially associated with R1 and R2. Functional analyses revealed that these genes were overrepresented in differentially expressed gene sets in organs beyond the brain (R1 and R2), including the heart (R1) and the pituitary gland, muscle, and kidney (R2). These genes were enriched in biological pathways implicated in dendritic cells (R2), macrophage functions (R1), and cancer (R1 and R2). Several of them were "druggable genes" for cancer (R1), inflammation (R1), cardiovascular diseases (R1), and diseases of the nervous system (R2). The longitudinal progression showed that APOE ε4, amyloid, and tau were associated with R2 at early asymptomatic stages, but this longitudinal association occurs only at late symptomatic stages in R1. Our findings deepen our understanding of the multifaceted pathogenesis of AD beyond the brain. In early asymptomatic stages, the two dimensions are associated with diverse pathological mechanisms, including cardiovascular diseases, inflammation, and hormonal dysfunction-driven by genes different from APOE-which may collectively contribute to the early pathogenesis of AD. All results are publicly available at https://labs-laboratory.com/medicine/ .


Assuntos
Doença de Alzheimer , Atrofia , Disfunção Cognitiva , Estudo de Associação Genômica Ampla , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Masculino , Feminino , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Idoso , Encéfalo/patologia , Imageamento por Ressonância Magnética , Lobo Temporal/patologia , Idoso de 80 Anos ou mais , Apolipoproteína E4/genética , Pessoa de Meia-Idade
2.
Neuroinformatics ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312131

RESUMO

Advances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research. "Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging" brought together researchers who use a broad range of imaging techniques to study brain structure and function at the convergence of the microscopic and macroscopic scales. The day-long event centered on areas in which the CMM has established expertise, including the development of emerging technologies and their application to clinical translational needs and basic neuroscience questions. The in-person symposium welcomed more than 150 attendees, including 57 faculty members, 61 postdoctoral fellows, 35 students, and four industry professionals, who represented institutions at the local, regional, and international levels. The symposium also served the training goals of both the CMM and the NTP. The event content, organization, and format were planned collaboratively by the faculty and trainees. Many CMM faculty presented or participated in a panel discussion, thus contributing to the dissemination of both the technologies they have developed under the auspices of the CMM and the findings they have obtained using those technologies. NTP trainees who benefited from the symposium included those who helped to organize the symposium and/or presented posters and gave "flash" oral presentations. In addition to gaining experience from presenting their work, they had opportunities throughout the day to engage in one-on-one discussions with visiting scientists and other faculty, potentially opening the door to future collaborations. The symposium presentations provided a deep exploration of the many technological advances enabling progress in structural and functional mesoscale brain imaging. Finally, students worked closely with the presenting faculty to develop this report summarizing the content of the symposium and putting it in the broader context of the current state of the field to share with the scientific community. We note that the references cited here include conference abstracts corresponding to the symposium poster presentations.

4.
Sleep ; 47(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37950486

RESUMO

STUDY OBJECTIVES: To use relatively noisy routinely collected clinical data (brain magnetic resonance imaging (MRI) data, clinical polysomnography (PSG) recordings, and neuropsychological testing), to investigate hypothesis-driven and data-driven relationships between brain physiology, structure, and cognition. METHODS: We analyzed data from patients with clinical PSG, brain MRI, and neuropsychological evaluations. SynthSeg, a neural network-based tool, provided high-quality segmentations despite noise. A priori hypotheses explored associations between brain function (measured by PSG) and brain structure (measured by MRI). Associations with cognitive scores and dementia status were studied. An exploratory data-driven approach investigated age-structure-physiology-cognition links. RESULTS: Six hundred and twenty-three patients with sleep PSG and brain MRI data were included in this study; 160 with cognitive evaluations. Three hundred and forty-two participants (55%) were female, and age interquartile range was 52 to 69 years. Thirty-six individuals were diagnosed with dementia, 71 with mild cognitive impairment, and 326 with major depression. One hundred and fifteen individuals were evaluated for insomnia and 138 participants had an apnea-hypopnea index equal to or greater than 15. Total PSG delta power correlated positively with frontal lobe/thalamic volumes, and sleep spindle density with thalamic volume. rapid eye movement (REM) duration and amygdala volume were positively associated with cognition. Patients with dementia showed significant differences in five brain structure volumes. REM duration, spindle, and slow-oscillation features had strong associations with cognition and brain structure volumes. PSG and MRI features in combination predicted chronological age (R2 = 0.67) and cognition (R2 = 0.40). CONCLUSIONS: Routine clinical data holds extended value in understanding and even clinically using brain-sleep-cognition relationships.


Assuntos
Demência , Sono , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Sono/fisiologia , Encéfalo/diagnóstico por imagem , Cognição , Sono REM/fisiologia
5.
NPJ Digit Med ; 6(1): 129, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443276

RESUMO

Advances in artificial intelligence have cultivated a strong interest in developing and validating the clinical utilities of computer-aided diagnostic models. Machine learning for diagnostic neuroimaging has often been applied to detect psychological and neurological disorders, typically on small-scale datasets or data collected in a research setting. With the collection and collation of an ever-growing number of public datasets that researchers can freely access, much work has been done in adapting machine learning models to classify these neuroimages by diseases such as Alzheimer's, ADHD, autism, bipolar disorder, and so on. These studies often come with the promise of being implemented clinically, but despite intense interest in this topic in the laboratory, limited progress has been made in clinical implementation. In this review, we analyze challenges specific to the clinical implementation of diagnostic AI models for neuroimaging data, looking at the differences between laboratory and clinical settings, the inherent limitations of diagnostic AI, and the different incentives and skill sets between research institutions, technology companies, and hospitals. These complexities need to be recognized in the translation of diagnostic AI for neuroimaging from the laboratory to the clinic.

6.
bioRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461570

RESUMO

Hypoxic ischemic encephalopathy (HIE) is a brain injury that occurs in 1 ~ 5/1000 term neonates. Accurate identification and segmentation of HIE-related lesions in neonatal brain magnetic resonance images (MRIs) is the first step toward predicting prognosis, identifying high-risk patients, and evaluating treatment effects. It will lead to a more accurate estimation of prognosis, a better understanding of neurological symptoms, and a timely prediction of response to therapy. We release the first public dataset containing neonatal brain diffusion MRI and expert annotation of lesions from 133 patients diagnosed with HIE. HIE-related lesions in brain MRI are often diffuse (i.e., multi-focal), and small (over half the patients in our data having lesions occupying <1% of brain volume). Segmentation for HIE MRI data is remarkably different from, and arguably more challenging than, other segmentation tasks such as brain tumors with focal and relatively large lesions. We hope that this dataset can help fuel the development of MRI lesion segmentation methods for HIE and small diffuse lesions in general.

7.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909456

RESUMO

Large, population-based MRI studies of adolescents promise transformational insights into neurodevelopment and mental illness risk 1,2. However, MRI studies of youth are especially susceptible to motion and other artifacts 3,4. These artifacts may go undetected by automated quality control (QC) methods that are preferred in high-throughput imaging studies, 5 and can potentially introduce non-random noise into clinical association analyses. Here we demonstrate bias in structural MRI analyses of children due to inclusion of lower quality images, as identified through rigorous visual quality control of 11,263 T1 MRI scans obtained at age 9-10 through the Adolescent Brain Cognitive Development (ABCD) Study6. Compared to the best-rated images (44.9% of the sample), lower-quality images generally associated with decreased cortical thickness and increased cortical surface area measures (Cohen's d 0.14-2.84). Variable image quality led to counterintuitive patterns in analyses that associated structural MRI and clinical measures, as inclusion of lower-quality scans altered apparent effect sizes in ways that increased risk for both false positives and negatives. Quality-related biases were partially mitigated by controlling for surface hole number, an automated index of topological complexity that differentiated lower-quality scans with good specificity at Baseline (0.81-0.93) and in 1,000 Year 2 scans (0.88-1.00). However, even among the highest-rated images, subtle topological errors occurred during image preprocessing, and their correction through manual edits significantly and reproducibly changed thickness measurements across much of the cortex (d 0.15-0.92). These findings demonstrate that inadequate QC of youth structural MRI scans can undermine advantages of large sample size to detect meaningful associations.

8.
Neuroinformatics ; 20(4): 943-964, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35347570

RESUMO

This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, "Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application", co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.


Assuntos
Aprendizado de Máquina , Neuroimagem , Humanos , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética
10.
Biol Psychiatry ; 92(3): 236-245, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35216811

RESUMO

BACKGROUND: Suicide is among the leading causes of death in children and adolescents. There are well-known risk factors of suicide, including childhood abuse, family conflicts, social adversity, and psychopathology. While suicide risk is also known to be heritable, few studies have investigated genetic risk in younger individuals. METHODS: Using polygenic risk score analysis, we examined whether genetic susceptibility to major psychiatric disorders is associated with suicidal behaviors among 11,878 children enrolled in the ABCD (Adolescent Brain Cognitive Development) Study. Suicidal ideation and suicide attempt data were assessed using the youth report of the Kiddie Schedule for Affective Disorders and Schizophrenia for DSM-5. After performing robust quality control of genotype data, unrelated individuals of European descent were included in analyses (n = 4344). RESULTS: Among 8 psychiatric disorders we examined, depression polygenic risk scores were associated with lifetime suicide attempts both in the baseline (odds ratio = 1.55, 95% CI = 1.10-2.18, p = 1.27 × 10-2) and in the follow-up year (odds ratio = 1.38, 95% CI = 1.08-1.77, p = 1.05 × 10-2), after adjusting for children's age, sex, socioeconomic backgrounds, family history of suicide, and psychopathology. In contrast, attention-deficit/hyperactivity disorder polygenic risk scores were associated with lifetime suicidal ideation (odds ratio = 1.15, 95% CI = 1.05-1.26, p = 3.71 × 10-3), suggesting a distinct contribution of the genetic risk underlying attention-deficit/hyperactivity disorder and depression on suicidal behaviors of children. CONCLUSIONS: The largest genetic sample of suicide risk data in U.S. children suggests a significant genetic basis of suicide risk related to attention-deficit/hyperactivity disorder and depression. Further research is warranted to examine whether incorporation of genomic risk may facilitate more targeted screening and intervention efforts.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno Depressivo Maior , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Encéfalo , Criança , Cognição , Depressão/psicologia , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Humanos , Fatores de Risco , Ideação Suicida
11.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941677

RESUMO

Harnessing placebo and nocebo effects has significant implications for research and medical practice. Placebo analgesia and nocebo hyperalgesia, the most well-studied placebo and nocebo effects, are thought to initiate from the dorsal lateral prefrontal cortex (DLPFC) and then trigger the brain's descending pain modulatory system and other pain regulation pathways. Combining repeated transcranial direct current stimulation (tDCS), an expectancy manipulation model, and functional MRI, we investigated the modulatory effects of anodal and cathodal tDCS at the right DLPFC on placebo analgesia and nocebo hyperalgesia using a randomized, double-blind and sham-controlled design. We found that compared with sham tDCS, active tDCS could 1) boost placebo and blunt nocebo effects and 2) modulate brain activity and connectivity associated with placebo analgesia and nocebo hyperalgesia. These results provide a basis for mechanistic manipulation of placebo and nocebo effects and may lead to improved clinical outcomes in medical practice.


Assuntos
Analgesia/métodos , Encéfalo/fisiopatologia , Hiperalgesia/fisiopatologia , Dor/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Análise de Variância , Encéfalo/diagnóstico por imagem , Método Duplo-Cego , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Efeito Nocebo , Manejo da Dor/métodos , Efeito Placebo , Córtex Pré-Frontal/diagnóstico por imagem , Inquéritos e Questionários , Adulto Jovem
12.
Neuroimage ; 237: 118100, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33933595

RESUMO

The dynamic nature of resting-state functional magnetic resonance imaging (fMRI) brain activity and connectivity has drawn great interest in the past decade. Specific temporal properties of fMRI brain dynamics, including metrics such as occurrence rate and transitions, have been associated with cognition and behaviors, indicating the existence of mechanism distruption in neuropsychiatric disorders. The development of new methods to manipulate fMRI brain dynamics will advance our understanding of these pathophysiological mechanisms from native observation to experimental mechanistic manipulation. In the present study, we applied repeated transcranial direct current stimulation (tDCS) to the right dorsolateral prefrontal cortex (rDLPFC) and the left orbitofrontal cortex (lOFC), during multiple simultaneous tDCS-fMRI sessions from 81 healthy participants to assess the modulatory effects of stimulating target brain regions on fMRI brain dynamics. Using the rDLPFC and the lOFC as seeds, respectively, we first identified two reoccurring co-activation patterns (CAPs) and calculated their temporal properties (e.g., occurrence rate and transitions) before administering tDCS. The spatial maps of CAPs were associated with different cognitive and disease domains using meta-analytical decoding analysis. We then investigated how active tDCS compared to sham tDCS in the modulation of the occurrence rates of these different CAPs and perturbations of transitions between CAPs. We found that by enhancing neuronal excitability of the rDLPFC and the lOFC, the occurrence rate of one CAP was significantly decreased while that of another CAP was significantly increased during the first 6 min of stimulation. Furthermore, these tDCS-associated changes persisted over subsequent testing sessions (both during and before/after tDCS) across three consecutive days. Active tDCS could perturb transitions between CAPs and a non-CAP state (when the rDLPFC and the lOFC were not activated), but not the transitions within CAPs. These results demonstrate the feasibility of modulating fMRI brain dynamics, and open new possibilities for discovering stimulation targets and dynamic connectivity patterns that can ensure the propagation of tDCS-induced neuronal excitability, which may facilitate the development of new treatments for disorders with altered dynamics.


Assuntos
Mapeamento Encefálico/métodos , Excitabilidade Cortical/fisiologia , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Mapeamento Encefálico/normas , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Distribuição Aleatória , Estimulação Transcraniana por Corrente Contínua/normas , Adulto Jovem
13.
Med Image Anal ; 72: 102091, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038818

RESUMO

Brain age estimated by machine learning from T1-weighted magnetic resonance images (T1w MRIs) can reveal how brain disorders alter brain aging and can help in the early detection of such disorders. A fundamental step is to build an accurate age estimator from healthy brain MRIs. We focus on this step, and propose a framework to improve the accuracy, generality, and interpretation of age estimation in healthy brain MRIs. For accuracy, we used one of the largest sample sizes (N = 16,705). For each subject, our proposed algorithm first explicitly splits the T1w image, which has been commonly treated as a single-channel 3D image in other studies, into two 3D image channels representing contrast and morphometry information. We further proposed a "fusion-with-attention" deep learning convolutional neural network (FiA-Net) to learn how to best fuse the contrast and morphometry image channels. FiA-Net recognizes varying contributions across image channels at different brain anatomy and different feature layers. In contrast, multi-channel fusion does not exist for brain age estimation, and is mostly attention-free in other medical image analysis tasks (e.g., image synthesis, or segmentation), where treating channels equally may not be optimal. For generality, we used lifespan data 0-97 years of age for real-world utility; and we thoroughly tested FiA-Net for multi-site and multi-scanner generality by two phases of cross-validations in discovery and replication data, compared to most other studies with only one phase of cross-validation. For interpretation, we directly measured each artificial neuron's correlation with the chronological age, compared to other studies looking at the saliency of features where salient features may or may not predict age. Overall, FiA-Net achieved a mean absolute error (MAE) of 3.00 years and Pearson correlation r=0.9840 with known chronological ages in healthy brain MRIs 0-97 years of age, comparing favorably with state-of-the-art algorithms and studies for accuracy and generality across sites and datasets. We also provided interpretations on how different artificial neurons and real neuroanatomy contribute to the age estimation.


Assuntos
Processamento de Imagem Assistida por Computador , Longevidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Atenção , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Redes Neurais de Computação , Adulto Jovem
14.
Radiology ; 298(2): 415-424, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33289612

RESUMO

Background A framework for understanding rapid diffusion changes from 0 to 6 years of age is important in the detection of neurodevelopmental disorders. Purpose To quantify patterns of normal apparent diffusion coefficient (ADC) development from 0 to 6 years of age. Materials and Methods Previously constructed age-specific ADC atlases from 201 healthy full-term children (108 male; age range, 0-6 years) with MRI scans acquired from 2006 to 2013 at one large academic hospital were analyzed to quantify four patterns: ADC trajectory, rate of ADC change, age of ADC maturation, and hemispheric asymmetries of maturation ages. Patterns were quantified in whole-brain, segmented regional, and voxelwise levels by fitting a two-term exponential model. Hemispheric asymmetries in ADC maturation ages were assessed using t tests with Bonferroni correction. Results The posterior limb of the internal capsule (mean ADC: left hemisphere, 1.18 ×103µm2/sec; right hemisphere, 1.17 ×103µm2/sec), anterior limb of the internal capsule (left, 1.11 ×103µm2/sec; right, 1.09 ×103µm2/sec), vermis (1.26 ×103µm2/sec), thalami (left, 1.17 ×103µm2/sec; right, 1.15 ×103µm2/sec), and basal ganglia (left, 1.26 ×103µm2/sec; right, 1.23 ×103µm2/sec) demonstrate low initial ADC values, indicating an earlier prenatal time course of development. ADC maturation was completed between 1.3 and 2.4 years of age, depending on the region. The vermis and left thalamus matured earliest (1.3 years). The frontolateral gray matter matured latest (right, 2.3 years; left, 2.4 years). ADC maturation occurred earlier in the left hemisphere (P < .001) in several regions, including the frontal (mean ± standard deviation) (left, 2.16 years ± 0.29; right, 2.19 years ± 0.31), temporal (left, 1.93 years ± 0.22; right, 1.99 years ± 0.22), and parietal (left, 1.92 years ± 0.30; right, 2.03 years ± 0.28) white matter. Maturation occurred earlier in the right hemisphere (P < .001) in several regions, including the thalami (left, 1.63 years ± 0.32; right, 1.45 years ± 0.33), basal ganglia (left, 1.79 years ± 0.31; right, 1.70 years ± 0.37), and hippocampi (left, 1.93 years ± 0.34; right, 1.78 years ± 0.33). Conclusion Normative apparent diffusion coefficient developmental patterns on diffusion-weighted MRI scans were quantified in children aged 0 to 6 years. This work provides knowledge about early brain development and may guide the detection of abnormal patterns of maturation. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Rollins in this issue.


Assuntos
Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Fatores Etários , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
15.
Anesth Analg ; 132(1): e6-e9, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30585904

RESUMO

Animal studies suggest that caffeine may interfere with acupuncture analgesia. This study investigated the modulation effect of daily caffeine intake on acupuncture analgesia in 27 healthy subjects using a crossover design. We found that real acupuncture increased pain thresholds compared to sham acupuncture. Further, there was no association between caffeine intake measurements of daily caffeine use, duration of caffeine consumption, or their interaction and preacupuncture and postacupuncture pain threshold changes. Our findings suggest that daily caffeine intake may not influence acupuncture analgesia in the cohort of healthy subjects who participated in study.


Assuntos
Analgesia por Acupuntura/métodos , Cafeína/administração & dosagem , Limiar da Dor/efeitos dos fármacos , Analgesia por Acupuntura/tendências , Adulto , Estudos de Coortes , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Masculino , Limiar da Dor/fisiologia
17.
Nat Commun ; 11(1): 3948, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769984

RESUMO

Thalamocortical dysrhythmia is a key pathology of chronic neuropathic pain, but few studies have investigated thalamocortical networks in chronic low back pain (cLBP) given its non-specific etiology and complexity. Using fMRI, we propose an analytical pipeline to identify abnormal thalamocortical network dynamics in cLBP patients and validate the findings in two independent cohorts. We first identify two reoccurring dynamic connectivity states and their associations with chronic and temporary pain. Further analyses show that cLBP patients have abnormal connectivity between the ventral lateral/posterolateral nucleus (VL/VPL) and postcentral gyrus (PoCG) and between the dorsal/ventral medial nucleus and insula in the less frequent connectivity state, and temporary pain exacerbation alters connectivity between the VL/VPL and PoCG and the default mode network in the more frequent connectivity state. These results extend current findings on thalamocortical dysfunction and dysrhythmia in chronic pain and demonstrate that cLBP pathophysiology and clinical pain intensity are associated with distinct thalamocortical network dynamics.


Assuntos
Córtex Cerebral/fisiopatologia , Dor Crônica/fisiopatologia , Núcleos Laterais do Tálamo/fisiopatologia , Dor Lombar/fisiopatologia , Núcleos Ventrais do Tálamo/fisiopatologia , Adulto , Mapeamento Encefálico , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Dor Crônica/diagnóstico , Conjuntos de Dados como Assunto , Feminino , Humanos , Núcleos Laterais do Tálamo/diagnóstico por imagem , Dor Lombar/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Medição da Dor , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Adulto Jovem
18.
Proc IEEE Int Symp Biomed Imaging ; 2020: 420-423, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32632348

RESUMO

Brain age prediction based on children's brain MRI is an important biomarker for brain health and brain development analysis. In this paper, we consider the 3D brain MRI volume as a sequence of 2D images and propose a new framework using the recurrent neural network for brain age estimation. The proposed method is named as 2D-ResNet18+Long short-term memory (LSTM), which consists of four parts: 2D ResNet18 for feature extraction on 2D images, a pooling layer for feature reduction over the sequences, an LSTM layer, and a final regression layer. We apply the proposed method on a public multisite NIH-PD dataset and evaluate generalization on a second multisite dataset, which shows that the proposed 2D-ResNet18+LSTM method provides better results than traditional 3D based neural network for brain age estimation.

19.
J Clin Med ; 9(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503194

RESUMO

Chronic low back pain (cLBP) is a common disorder with unsatisfactory treatment options. Acupuncture has emerged as a promising method for treating cLBP. However, the mechanism underlying acupuncture remains unclear. In this study, we investigated the modulation effects of acupuncture on resting state functional connectivity (rsFC) of the periaqueductal gray (PAG) and ventral tegmental area (VTA) in patients with cLBP. Seventy-nine cLBP patients were recruited and assigned to four weeks of real or sham acupuncture. Resting state functional magnetic resonance imaging data were collected before the first and after the last treatment. Fifty patients completed the study. We found remission of pain bothersomeness in all treatment groups after four weeks, with greater pain relief after real acupuncture compared to sham acupuncture. We also found that real acupuncture can increase VTA/PAG rsFC with the amygdala, and the increased rsFC was associated with decreased pain bothersomeness scores. Baseline PAG-amygdala rsFC could predict four-week treatment response. Our results suggest that acupuncture may simultaneously modulate the rsFC of key regions in the descending pain modulation (PAG) and reward systems (VTA), and the amygdala may be a key node linking the two systems to produce antinociceptive effects. Our findings highlight the potential of acupuncture for chronic low back pain management.

20.
Neuroimage ; 217: 116899, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32380138

RESUMO

Prior studies have shown that patients suffering from chronic Low Back Pain (cLBP) have impaired somatosensory processing including reduced tactile acuity, i.e. reduced ability to resolve fine spatial details with the perception of touch. The central mechanism(s) underlying reduced tactile acuity are unknown but may include changes in specific brain circuitries (e.g. neuroplasticity in the primary somatosensory cortex, S1). Furthermore, little is known about the linkage between changes in tactile acuity and the amelioration of cLBP by somatically-directed therapeutic interventions, such as acupuncture. In this longitudinal neuroimaging study, we evaluated healthy control adults (HC, N â€‹= â€‹50) and a large sample of cLBP patients (N â€‹= â€‹102) with structural brain imaging (T1-weighted MRI for Voxel-Based Morphometry, VBM; Diffusion Tensor Imaging, DTI) and tactile acuity testing using two-point discrimination threshold (2PDT) over the lower back (site of pain) and finger (control) locations. Patients were evaluated at baseline and following a 4-week course of acupuncture, with patients randomized to either verum acupuncture, two different forms of sham acupuncture (designed with or without somatosensory afference), or no-intervention usual care control. At baseline, cLBP patients demonstrated reduced acuity (greater 2PDT, P â€‹= â€‹0.01) over the low back, but not finger (P â€‹= â€‹0.29) locations compared to HC, suggesting that chronic pain affects tactile acuity specifically at body regions encoding the experience of clinical pain. At baseline, Gray Matter Volume (GMV) was elevated and Fractional Anisotropy (FA) was reduced, respectively, in the S1-back region of cLBP patients compared to controls (P â€‹< â€‹0.05). GMV in cLBP correlated with greater 2PDT-back scores (ρ â€‹= â€‹0.27, P â€‹= â€‹0.02). Following verum acupuncture, tactile acuity over the back was improved (reduced 2PDT) and greater improvements were associated with reduced S1-back GMV (ρ â€‹= â€‹0.52, P â€‹= â€‹0.03) and increased S1-back adjacent white matter FA (ρ â€‹= â€‹-0.56, P â€‹= â€‹0.01). These associations were not seen for non-verum control interventions. Thus, S1 neuroplasticity in cLBP is linked with deficits in tactile acuity and, following acupuncture therapy, may represent early mechanistic changes in somatosensory processing that track with improved tactile acuity.


Assuntos
Terapia por Acupuntura/métodos , Agnosia/fisiopatologia , Agnosia/terapia , Dor Lombar/fisiopatologia , Dor Lombar/terapia , Plasticidade Neuronal , Desempenho Psicomotor , Córtex Somatossensorial/fisiopatologia , Percepção do Tato , Adolescente , Adulto , Agnosia/etiologia , Anisotropia , Imagem de Tensor de Difusão , Discriminação Psicológica , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiopatologia , Humanos , Estudos Longitudinais , Dor Lombar/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Limiar Sensorial , Método Simples-Cego , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA