Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(18): e202318692, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38323697

RESUMO

The efficiency of electrolysis is reduced due to the sluggish oxygen evolution reaction (OER). Besides catalyst properties, electrocatalytic activity also depends on the interaction of the electrocatalyst with the electrolyte. Here, we show that the addition of small amounts of Li+ to Fe-free NaOH or KOH electrolytes activates NiFeOOH for the OER compared to single-cation electrolytes. Moreover, the activation was maintained when the solution was returned to pure NaOH. Importantly, we show that the origin of activation by Li+ cations is primarily non-kinetic in nature, as the OER onset for the mixed electrolyte does not change and the Tafel slope at low current density is ~30 mV/dec in both electrolytes. However, the increase of the apparent Tafel slope remains lower at increasing current densities in the presence of Li+. Based on electrochemical quartz crystal microbalance and in situ X-ray absorption spectroscopy measurements, we show that this reduction of non-kinetic effects is due to enhanced intercalation of sodium, water and hydroxide. This enhanced electrolyte penetration facilitates the OER, especially at higher current densities and for increased catalyst loading. Our work shows that mixed electrolytes where distinct cations can have different roles provide a simple and promising strategy towards improved OER rates.

2.
Angew Chem Int Ed Engl ; 62(26): e202303111, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37069123

RESUMO

Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both-charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3 (HHTP)2 ), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes.


Assuntos
Cobre , Estruturas Metalorgânicas , Lítio , Espectroscopia Dielétrica , Difusão , Íons
3.
J Phys Chem Lett ; 14(2): 545-551, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36629512

RESUMO

For electrocatalysts with a layered structure, ion intercalation is a common phenomenon. Gaining reliable information about the intercalation of ions from the electrolyte is indispensable for a better understanding of the catalytic performance of these electrocatalysts. Here, we take a holistic approach for following intercalation processes by studying the dynamics of the catalyst, water molecules, and ions during intercalation using operando soft X-ray absorption spectroscopy (XAS). Sodium and oxygen K-edge and nickel L-edge spectra were used to investigate the Na+ intercalation in a Ni0.8Fe0.2Ox electrocatalyst during the oxygen evolution reaction (OER) in NaOH (0.1 M). The Na K-edge spectra show an irreversible intensity increase upon initial potential cycling and a reversible intensity increase at the intercalation potential, 1.45 VRHE, coinciding with an increase in the Ni oxidation state. Simultaneously, the O K-edge spectra show that the Na+ intercalation does not significantly impact the hydration of the catalyst.

4.
ChemElectroChem ; 9(13): e202200482, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35915742

RESUMO

Improving the stability of electrocatalysts for the oxygen evolution reaction (OER) through materials design has received less attention than improving their catalytic activity. We explored the effects of Mn addition to a cobalt oxide for stabilizing the catalyst by comparing single phase CoOx and (Co0.7Mn0.3)Ox films electrodeposited in alkaline solution. The obtained disordered films were classified as layered oxides using X-ray absorption spectroscopy (XAS). The CoOx films showed a constant decrease in the catalytic activity during cycling, confirmed by oxygen detection, while that of (Co0.7Mn0.3)Ox remained constant within error as measured by electrochemical metrics. These trends were rationalized based on XAS analysis of the metal oxidation states, which were Co2.7+ and Mn3.7+ in the bulk and similar near the surface of (Co0.7Mn0.3)Ox, before and after cycling. Thus, Mn in (Co0.7Mn0.3)Ox successfully stabilized the bulk catalyst material and its surface activity during OER cycling. The development of stabilization approaches is essential to extend the durability of OER catalysts.

5.
Angew Chem Int Ed Engl ; 60(29): 15821-15826, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33884730

RESUMO

The instability and expense of anodes for water electrolyzers with acidic electrolytes can be overcome through the implementation of a cobalt-iron-lead oxide electrocatalyst, [Co-Fe-Pb]Ox , that is self-healing in the presence of dissolved metal precursors. However, the latter requirement is pernicious for the membrane and especially the cathode half-reaction since Pb2+ and Fe3+ precursors poison the state-of-the-art platinum H2 evolving catalyst. To address this, we demonstrate the invariably stable operation of [Co-Fe-Pb]Ox in acidic solutions through a cobalt-selective self-healing mechanism without the addition of Pb2+ and Fe3+ and investigate the kinetics of the process. Soft X-ray absorption spectroscopy reveals that low concentrations of Co2+ in the solution stabilize the catalytically active Co(Fe) sites. The highly promising performance of this system is showcased by steady water electrooxidation at 80±1 °C and 10 mA cm-2 , using a flat electrode, at an overpotential of 0.56±0.01 V on a one-week timescale.

6.
ACS Appl Mater Interfaces ; 12(13): 15087-15094, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134245

RESUMO

Intercalation in Ti3C2Tx MXene is essential for a diverse set of applications such as water purification, desalination, electrochemical energy storage, and sensing. The interlayer spacing between the Ti3C2Tx nanosheets can be controlled by cation intercalation; however, the impact of intercalation on the Ti3C2Tx MXene chemical and electronic structures is not well understood. Herein, we characterized the electronic structure of pristine, Li-, Na-, K-, and Mg-intercalated Ti3C2Tx MXenes dispersed initially in water and 10 mM sulfuric acid (H2SO4) using X-ray absorption spectroscopy (XAS). The cation intercalation is found to dramatically influence the chemical environment of Ti atoms. The Ti oxidation of the MXene increases progressively upon intercalation of cations of larger sizes after drying in air, while interestingly a low Ti oxidation is observed for all intercalated MXenes after dispersion in diluted H2SO4. In situ XAS at the Ti L-edge was conducted during electrochemical oxidation to probe the changes in the Ti oxidation state in the presence of different cations in H2SO4 aqueous electrolyte. By applying the sensitivity of the Ti L-edge to probe the oxidation state of Ti atoms, we demonstrate that cation-intercalation and H2SO4 environment significantly alter the Ti3C2Tx surface chemistry.

7.
J Phys Chem Lett ; 10(14): 3843-3848, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31246468

RESUMO

Carbon dots (CDs) exhibit outstanding physicochemical properties that render them excellent materials for various applications, often occurring in an aqueous environment, such as light harvesting and fluorescence bioimaging. Here we characterize the electronic structures of CDs and water molecules in aqueous dispersions using in situ X-ray absorption spectroscopy. Three types of CDs with different core structures (amorphous vs graphitic) and compositions (undoped vs nitrogen-doped) were investigated. Depending on the CD core structure, different ionic currents generated upon X-ray irradiation of the CD dispersions at the carbon K-edge were detected, which are interpreted in terms of different charge transfer to the surrounding solvent molecules. The hydrogen bonding networks of water molecules upon interaction with the different CDs were also probed at the oxygen K-edge. Both core graphitization and nitrogen doping were found to endow the CDs with enhanced electron transfer and hydrogen bonding capabilities with the surrounding water molecules.

8.
Inorg Chem ; 58(8): 4731-4740, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932491

RESUMO

We report on the electronic structure of cobalt(II) tris-2,2'-bipyridine and cobalt(III) tris-2,2'-bipyridine in aqueous solution using resonant inelastic X-ray scattering (RIXS) spectroscopy at the Co L-edge and N K-edge resonances. Partial fluorescence yield X-ray absorption spectra at both edges were obtained by signal integration of the respective RIXS spectra. Experiments are complemented by calculations of the X-ray absorption spectra for high- and low-spin configurations using density functional theory/restricted open-shell configuration interaction singles and time-dependent density functional theory methods. We find that linear combinations of the simulated X-ray absorption spectra for different spin states reproduce the experimental spectra. Best agreement is obtained for measurements at the Co L-edge, for both samples. For cobalt(II) tris-2,2'-bipyridine, our combined experimental and computational study reveals ∼40% low-spin and ∼60% high-spin state components. Much stronger low-spin character is found for cobalt(III) tris-2,2'-bipyridine, ∼80% low spin and ∼20% high spin. Prominent energy-loss features in the Co RIXS spectra are indicative of d-d excitations and charge-transfer excitations due to strong mixing between metal and ligand orbitals in both complexes. Analysis of N 1s RIXS data reveals the emission from metal dominated orbitals in the valence region, supporting the strong metal-ligand mixing.

9.
J Phys Chem Lett ; 8(20): 5136-5140, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28980813

RESUMO

Detection of ionic current with two electrodes installed in a liquid cell has been established previously as an effective method, termed as total ion yield (TIY), to acquire X-ray absorption (XA) spectra of liquid solutions behind a membrane. In this study, the exact locations where TIY signals are generated are further investigated and unequivocally identified. The detected ionic current stems dominantly from the bulk solution species while only marginally from the species located at the membrane-solution interface. Such a two-electrode TIY detection in a liquid cell combines the advantages of bulk sensitivity of fluorescence yield and high signal strength (for light elements) of electron yield, exhibiting its novel and promising role in the XA spectroscopy measurements of liquid cells.

10.
J Phys Chem Lett ; 8(9): 2087-2092, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28436663

RESUMO

Photons and electrons are two common relaxation products upon X-ray absorption, enabling fluorescence yield and electron yield detections for X-ray absorption spectroscopy (XAS). The ions that are created during the electron yield process are relaxation products too, which are exploited in this study to produce ion yield for XA detection. The ionic currents measured in a liquid cell filled with water or iron(III) nitrate aqueous solutions exhibit characteristic O K-edge and Fe L-edge absorption profiles as a function of excitation energy. Application of two electrodes installed in the cell is crucial for obtaining the XA spectra of the liquids behind membranes. Using a single electrode can only probe the species adsorbed on the membrane surface. The ionic-current detection, termed as total ion yield (TIY) in this study, also produces an undistorted Fe L-edge XA spectrum, indicating its promising role as a novel detection method for XAS studies in liquid cells.

11.
Sci Rep ; 6: 31382, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27527753

RESUMO

Research of blood substitute formulations and their base materials is of high scientific interest. Especially fluorinated microemulsions based on perfluorocarbons, with their interesting chemical properties, offer opportunities for applications in biomedicine and physical chemistry. In this work, carbon K-edge absorption spectra of liquid perfluoroalkanes and their parent hydrocarbons are presented and compared. Based on soft X-ray absorption, a comprehensive picture of the electronic structure is provided with the aid of time dependent density functional theory. We have observed that conformational geometries mainly influence the chemical and electronic interactions in the presented liquid materials, leading to a direct association of conformational geometries to the dissolving capacity of the presented perfluorocarbons with other solvents like water and possibly gases like oxygen.

12.
Chemistry ; 22(34): 12040-9, 2016 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-27416871

RESUMO

Soft X-ray emission (XE), absorption (XA), and resonant inelastic scattering (RIXS) experiments have been conducted at the nitrogen K-edge of urea and its derivatives in aqueous solution and were compared with density functional theory and time-dependent density functional theory calculations. This comprehensive study provides detailed information on the occupied and unoccupied molecular orbitals of urea, thiourea, acetamide, dimethylurea, and biuret at valence levels. By identifying the electronic transitions that contribute to the experimental spectral features, the energy gap between the highest occupied and the lowest unoccupied molecular orbital of each molecule is determined. Moreover, a theoretical approach is introduced to simulate resonant inelastic X-ray scattering spectra by adding an extra electron to the lowest unoccupied molecular orbital, thereby mimicking the real initial state of the core-electron absorption before the subsequent relaxation process.

13.
J Phys Chem A ; 120(18): 2808-14, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27101344

RESUMO

Detection of secondary emissions, fluorescence yield (FY), or electron yield (EY), originating from the relaxation processes upon X-ray resonant absorption has been widely adopted for X-ray absorption spectroscopy (XAS) measurements when the primary absorption process cannot be probed directly in transmission mode. Various spectral distortion effects inherent in the relaxation processes and in the subsequent transportation of emitted particles (electron or photon) through the sample, however, undermine the proportionality of the emission signals to the X-ray absorption coefficient. In the present study, multiple radiative (FY) and nonradiative (EY) decay channels have been experimentally investigated on a model system, FeCl3 aqueous solution, at the excitation energy of the Fe L-edge. The systematic comparisons between the experimental spectra taken from various decay channels, as well as the comparison with the theoretically simulated Fe L-edge XA spectrum that involves only the absorption process, indicate that the detection of the Fe 3s → 2p partial fluorescence yield (PFY) gives rise to the true Fe L-edge XA spectrum. The two key characteristics generalized from this particular decay channel-zero orbital angular momentum (i.e., s orbital) and core-level emission-set a guideline for obtaining undistorted X-ray absorption spectra in the future.

14.
Sci Rep ; 6: 24659, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27098342

RESUMO

L-edge soft X-ray spectroscopy has been proven to be a powerful tool to unravel the peculiarities of electronic structure of transition metal compounds in solution. However, the X-ray absorption spectrum is often probed in the total or partial fluorescence yield modes, what leads to inherent distortions with respect to the true transmission spectrum. In the present work, we combine photon- and electron-yield experimental techniques with multi-reference first principles calculations. Exemplified for the prototypical FeCl2 aqueous solution we demonstrate that the partial yield arising from the Fe3s → 2p relaxation is a more reliable probe of the absorption spectrum than the Fe3d → 2p one. For the bonding-relevant 3d → 2p channel we further provide the basis for the joint analysis of resonant photoelectron and inelastic X-ray scattering spectra. Establishing the common energy reference allows to assign both spectra using the complementary information provided through electron-out and photon-out events.

15.
Inorg Chem ; 55(1): 22-8, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684287

RESUMO

Two manganese porphyrin complexes, manganese tetraphenylporphyrin chloride (MnTPP-Cl) and manganese octaethylporphyrin chloride (MnOEP-Cl), exhibit distinctive spectral features of metal-to-ligand charge-transfer (MLCT) when dissolved in dichloromethane, characterized by resonant inelastic X-ray scattering at the Mn L-edge and N K-edge. The metal-ligand orbital mixing that mediates the MLCT is analyzed with the help of density functional theory/restricted open-shell configuration interaction singles calculations. On the basis of experimental and theoretical analyses, the distinctive MLCT is argued to originate from alteration of the porphyrin outer ligands: phenyl groups in MnTPP-Cl and ethyl groups in MnOEP-Cl.

16.
Phys Chem Chem Phys ; 17(43): 29000-6, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26455378

RESUMO

X-ray absorption/emission spectroscopy (XAS/XES) at the N K-edge of iron protoporphyrin IX chloride (FePPIX-Cl, or hemin) has been carried out for dissolved monomers in DMSO, dimers in water and for the solid state. This sequence of samples permits identification of characteristic spectral features associated with the hemin intermolecular bonding. These characteristic features are further analyzed and understood at the molecular orbital (MO) level based on the DFT calculations.


Assuntos
Hemina/química , Soluções/química , Animais , Bovinos , Dimerização , Dimetil Sulfóxido/química , Teoria Quântica , Água/química , Espectroscopia por Absorção de Raios X
17.
Phys Chem Chem Phys ; 17(28): 18337-43, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26105104

RESUMO

Perfluorocarbons are a family of molecules consisting mainly of carbon and fluorine atoms. They have interesting chemical properties and have diverse applications in biomedicine, physical chemistry and polymer science. In this work, carbon K-edge absorption and emission spectra of liquid decalin are presented and compared to perfluorodecalin. A comprehensive picture of the electronic structure of decalin is provided based on soft X-ray absorption and emission spectroscopies. Experimental data are compared to theoretical time-dependent density functional theory for the hydrocarbon, the perfluorocarbon and the stepwise fluorinated derivatives. We observed a molecular orbital change from unoccupied to occupied orbitals for perfluorodecalin, which was induced through the fluorination process.


Assuntos
Fluorocarbonos/química , Flúor/química , Halogenação , Modelos Moleculares , Teoria Quântica , Espectroscopia por Absorção de Raios X
18.
Chemistry ; 21(19): 7256-63, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25788101

RESUMO

Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions.

19.
J Phys Chem B ; 119(7): 3058-62, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25594240

RESUMO

The local electronic structure of the hemin Fe center has been investigated by X-ray absorption and emission spectroscopy (XAS/XES) for hemin in aqueous solution where hemin dimerization occurs. The XAS and XES spectra of the hemin dimer were then compared with those of the hemin monomer we previously studied in dimethyl sulfoxide solution. A local energy gap opening at the Fe sites was observed for the hemin dimer, with the occupied valence states shifted to lower binding energies, while the unoccupied valence states share the same energies as the hemin monomer. Such a gap opening is argued to originate from the Fe 3d orbital localization induced by hemin dimerization in aqueous solution.

20.
Phys Chem Chem Phys ; 17(5): 3409-14, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25529387

RESUMO

The local electronic structure of the cobalt centre-ion of Co(III) protoporphyrin IX chloride dissolved in dimethyl sulfoxide (DMSO) liquid solution is studied by resonant inelastic X-ray scattering (RIXS) spectroscopy at the cobalt L-edge. The resulting cobalt 2p partial-fluorescence-yield (PFY) X-ray absorption (XA) spectrum, integrated from RIXS spectra, is simulated for various possible spin-states and coordination of the cobalt centre by using the newly developed density functional theory/restricted open shell single excitation configuration interaction (DFT/ROCIS) method. Comparison between experiment and calculation shows that the cobalt ion (3d(6) electronic configuration) adopts a low-spin state with all six 3d electrons paired, and the cobalt centre is either 5-coordinated by its natural ligands (one chloride ion and four nitrogen atoms), or 6-coordinated, when binding to an oxygen atom of a DMSO solvent molecule. Analysis of the measured RIXS spectra reveals weak 3d-3d electron correlation, and in addition a value of the local HOMO-LUMO gap at the Co sites is obtained.


Assuntos
Cobalto/química , Protoporfirinas/química , Cloretos/química , Dimetil Sulfóxido/química , Elétrons , Metais/química , Teoria Quântica , Soluções/química , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA