Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 439: 138066, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035493

RESUMO

The complex crystal structure of coca butter (CB) is responsible for the unique melting behavior, surface gloss, and mechanical properties of chocolate. While most studies concentrated on the crystalline state of CB, few studied the isotropic liquid state, which has a major impact on the crystallization process and the characteristics of the resulting crystals. In this study, the molecular organizations of the main CB triacylglycerols (TAGs; 1,3-dipalmitoyl-2-oleoylglycerol, palmitoyl-oleoyl-stearoylglycerol, POS, and 1,3-distearoyl-2-oleoylglycerol) were studied. The findings revealed the tunning-fork (Tf) conformation, commonly found in the crystalline state, is the least abundant in the isotropic liquid state of CB and pure TAGs. Notably, POS was found to interact with itself in CB, while its molecules with Tf conformation, although in small amounts in the mixture, tend to pair with each other at lower temperatures. These results highlight the significance of POS in CB crystallization and provide insights for developing CB alternatives.


Assuntos
Cacau , Coca , Cocaína , Gorduras na Dieta/análise , Triglicerídeos/química , Cristalização , Cacau/química
2.
Foods ; 9(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322787

RESUMO

The current research explored the effect of different sucrose esters (SEs), with different hydrophilic-lipophilic balance (HLB) values, on bigel structure and properties. Bigels consisting of a water phase with glycerol and gelatin and an oil phase with glycerol mono-stearate, lecithin, and SEs with different HLB values were prepared. Rheological and thermal analyses revealed similar gelation-melting transitions governed by glycerol-monostearate crystallization (at ≈55 °C) for all bigel samples. The bigel matrix of the H1 and H2 samples (bigels consisting of SEs with HLBs of 1 and 2, respectively) demonstrated physical gel rheological characteristics of higher elastic and solid-like behavior compared with the H6 sample (bigel consisting SE with HLB 6). A similar trend was observed in the mechanical analysis with respect to hardness, firmness, and spreadability values, which were in the order of H1 > H2 > H6. This behavior was attributed to droplet size observed in the microscopy analysis, revealing significantly smaller droplets in the H1 and H2 samples compared with the H6 sample. These differences in droplet size were attributed to the diffusion kinetics of the low-molecular-weight surfactants. More specifically, the ability of mono-esterified SEs to diffuse faster than fully esterified SEs due to lower molar mass leads to a higher SE content at the oil-in-water (O/W) interface as opposed to the bulk oil phase. The results demonstrate the importance of the interface content in O/W bigel systems, providing an effective way to alter and control the bigel bulk properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA