Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Prog Mol Biol Transl Sci ; 170: 73-122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32145953

RESUMO

In this chapter the scale-consistent approach to the derivation of coarse-grained force fields developed in our laboratory is presented, in which the effective energy function originates from the potential of mean force of the system under consideration and embeds atomistically detailed interactions in the resulting energy terms through use of Kubo's cluster-cumulant expansion, appropriate selection of the major degrees of freedom to be averaged out in the derivation of analytical approximations to the energy terms, and appropriate expression of the interaction energies at the all-atom level in these degrees of freedom. Our approach enables the developers to find correct functional forms of the effective coarse-grained energy terms, without having to import them from all-atom force fields or deriving them on a heuristic basis. In particular, the energy terms derived in such a way exhibit correct dependence on coarse-grained geometry, in particular on site orientation. Moreover, analytical formulas for the multibody (correlation) terms, which appear to be crucial for coarse-grained modeling of many of the regular structures such as, e.g., protein α-helices and ß-sheets, can be derived in a systematic way. Implementation of the developed theory to the UNIfied COarse-gRaiNed (UNICORN) model of biological macromolecules, which consists of the UNRES (for proteins), NARES-2P (for nucleic acids), and SUGRES-1P (for polysaccharides) components, and is being developed in our laboratory is described. Successful applications of UNICORN to the prediction of protein structure, simulating the folding and stability of proteins and nucleic acids, and solving biological problems are discussed.


Assuntos
Biopolímeros/química , Simulação de Dinâmica Molecular , DNA/química , Proteínas de Choque Térmico HSP70/química , Hidrodinâmica , Ligação de Hidrogênio , Cinética , Substâncias Macromoleculares/química , Ferramenta de Busca , Telômero/metabolismo , Termodinâmica
2.
Proteins ; 87(12): 1200-1221, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31612567

RESUMO

We present the results for CAPRI Round 46, the third joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo-oligomers and 6 heterocomplexes. Eight of the homo-oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher-order assemblies. These were more difficult to model, as their prediction mainly involved "ab-initio" docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance "gap" was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template-based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.


Assuntos
Biologia Computacional , Conformação Proteica , Proteínas/ultraestrutura , Software , Algoritmos , Sítios de Ligação/genética , Bases de Dados de Proteínas , Modelos Moleculares , Ligação Proteica/genética , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/genética , Homologia Estrutural de Proteína
3.
J Mol Graph Model ; 92: 154-166, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31376733

RESUMO

The recent NEWCT-9P version of the coarse-grained UNRES force field for proteins, with scale-consistent formulas for the local and correlation terms, has been tested in the CASP13 experiment of the blind-prediction of protein structure, in the ab initio, contact-assisted, and data-assisted modes. Significant improvement of the performance has been observed with respect to the CASP11 and CASP12 experiments (by over 10 GDT_TS units for the ab initio mode predictions and by over 15 GDT_TS units for the contact-assisted prediction, respectively), which is a result of introducing scale-consistent terms and improved handling of contact-distance restraints. As in previous CASP exercises, UNRES ranked higher in the free modeling category than in the general category that included template based modeling targets. Use of distance restraints from the predicted contacts, albeit many of them were wrong, resulted in the increase of GDT_TS by over 8 units on average and introducing sparse restraints from small-angle X-ray/neutron scattering and chemical cross-link-mass-spectrometry experiments, and ambiguous restraints from nuclear magnetic resonance experiments has also improved the predictions by 8.6, 9.7, and 10.7 GDT_TS units on average, respectively.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Algoritmos , Proteínas da Matriz do Complexo de Golgi/química , Peptídeos/química
4.
Phys Chem Chem Phys ; 20(29): 19656-19663, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30014063

RESUMO

A physics-based method for the prediction of the structures of nucleic acids, which is based on the physics-based 2-bead NARES-2P model of polynucleotides and global-optimization Conformational Space Annealing (CSA) algorithm has been proposed. The target structure is sought as the global-energy-minimum structure, which ignores the entropy component of the free energy but spares expensive multicanonical simulations necessary to find the conformational ensemble with the lowest free energy. The CSA algorithm has been modified to optimize its performance when treating both single and multi-chain nucleic acids. It was shown that the method finds the native fold for simple RNA molecules and DNA duplexes and with limited distance restraints, which can easily be obtained from the secondary-structure-prediction servers, complex RNA folds can be treated with using moderate computer resources.


Assuntos
Algoritmos , DNA/química , Simulação de Dinâmica Molecular , RNA/química , Entropia , Conformação de Ácido Nucleico
5.
Sci Rep ; 8(1): 9939, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967418

RESUMO

Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP. Members of the WeFold coopetition (cooperation and competition) participated in CASP as individual teams, but also shared components of their methods to create hybrid pipelines and actively contributed to this effort. We assert that the scale and diversity of integrative prediction pipelines could not have been achieved by any individual lab or even by any collaboration among a few partners. The models contributed by the participating groups and generated by the pipelines are publicly available at the WeFold website providing a wealth of data that remains to be tapped. Here, we analyze the results of the 2014 and 2016 pipelines showing improvements according to the CASP assessment as well as areas that require further adjustments and research.


Assuntos
Caspase 12/metabolismo , Caspases/metabolismo , Biologia Computacional/métodos , Modelos Moleculares , Software , Caspase 12/química , Caspases/química , Humanos , Conformação Proteica
6.
J Phys Chem B ; 119(26): 8227-38, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26061614

RESUMO

Hypoxia--a hallmark of solid tumors--makes hypoxic cells radioresistant. On the other hand, DNA, the main target of anticancer therapy, is not sensitive to the near UV photons and hydrated electrons, one of the major products of water radiolysis under hypoxic conditions. A possible way to overcome these obstacles to the efficient radio- and photodynamic therapy of cancer is to sensitize the cellular DNA to electrons and/or ultraviolet radiation. While incorporated into genomic DNA, modified nucleosides, 5-bromo-2'-deoxyuridine in particular, sensitize cells to both near-ultraviolet photons and γ rays. It is believed that, in both sensitization modes, the reactive nucleobase radical is formed as a primary product which swiftly stabilizes, leading to serious DNA damage, like strand breaks or cross-links. However, despite the apparent similarity, such radio- and photosensitization of DNA seems to be ruled by fundamentally different mechanisms. In this review, we demonstrate that the most important factors deciding on radiodamage to the labeled DNA are (i) the electron affinity (EA) of modified nucleoside (mNZ), (ii) the local surroundings of the label that significantly influences the EA of mNZ, and (iii) the strength of the chemical bond holding together the substituent and a nucleobase. On the other hand, we show that the UV damage to sensitized DNA is governed by long-range photoinduced electron transfer, the efficiency of which is controlled by local DNA sequences. A critical review of the literature mechanisms concerning both types of damage to the labeled biopolymer is presented. Ultimately, the perspectives of studies on DNA sensitization in the context of cancer therapy are discussed.


Assuntos
Dano ao DNA/efeitos da radiação , DNA/química , Nucleosídeos/química , Raios Ultravioleta , Bromodesoxiuridina , Quebras de DNA/efeitos da radiação , Elétrons , Radicais Livres/química , Raios gama , Humanos , Radiação Ionizante
7.
Phys Chem Chem Phys ; 16(36): 19424-8, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25102433

RESUMO

Halogenated nucleotides belong to the group of radiosensitizers that sensitize solid tumors when incorporated into genomic DNA. Here, we consider the propensity of two isomeric bromocytidine derivatives, 3',5'-diphosphates of 5-bromo-2'-deoxycytidine (5BrdCDP) and 6-bromo-2'-deoxycytidine (6BrdCDP), to be damaged by electrons - one of the most abundant products formed during radiotherapy. An intranucleotide degradation mechanism leading to phosphodiester bond breakage (a model of single strand breakage in labeled DNA) and a ketone derivative formation was found for 6BrdCDP, while for 5BrdCDP a similar mechanism is sterically hindered. 5BrdCDP is, therefore, suggested to undergo electron induced degradation involving hydrogen transfer from a neighboring nucleotide or environment.


Assuntos
Bromodesoxicitidina/análogos & derivados , Bromodesoxicitidina/química , DNA/química , Elétrons , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA