Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell Rep ; 42(12): 113494, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085642

RESUMO

Antigen-specific T cells traffic to, are influenced by, and create unique cellular microenvironments. Here we characterize these microenvironments over time with multiplexed imaging in a melanoma model of adoptive T cell therapy and human patients with melanoma treated with checkpoint inhibitor therapy. Multicellular neighborhood analysis reveals dynamic immune cell infiltration and inflamed tumor cell neighborhoods associated with CD8+ T cells. T cell-focused analysis indicates T cells are found along a continuum of neighborhoods that reflect the progressive steps coordinating the anti-tumor immune response. More effective anti-tumor immune responses are characterized by inflamed tumor-T cell neighborhoods, flanked by dense immune infiltration neighborhoods. Conversely, ineffective T cell therapies express anti-inflammatory cytokines, resulting in regulatory neighborhoods, spatially disrupting productive T cell-immune and -tumor interactions. Our study provides in situ mechanistic insights into temporal tumor microenvironment changes, cell interactions critical for response, and spatial correlates of immunotherapy outcomes, informing cellular therapy evaluation and engineering.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Linfócitos T CD8-Positivos , Imunoterapia/métodos , Citocinas , Imunidade , Microambiente Tumoral
2.
Nat Rev Immunol ; 23(10): 613, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37653335
3.
Nat Methods ; 20(2): 304-315, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624212

RESUMO

The ability to align individual cellular information from multiple experimental sources is fundamental for a systems-level understanding of biological processes. However, currently available tools are mainly designed for single-cell transcriptomics matching and integration, and generally rely on a large number of shared features across datasets for cell matching. This approach underperforms when applied to single-cell proteomic datasets due to the limited number of parameters simultaneously accessed and lack of shared markers across these experiments. Here, we introduce a cell-matching algorithm, matching with partial overlap (MARIO) that accounts for both shared and distinct features, while consisting of vital filtering steps to avoid suboptimal matching. MARIO accurately matches and integrates data from different single-cell proteomic and multimodal methods, including spatial techniques and has cross-species capabilities. MARIO robustly matched tissue macrophages identified from COVID-19 lung autopsies via codetection by indexing imaging to macrophages recovered from COVID-19 bronchoalveolar lavage fluid by cellular indexing of transcriptomes and epitopes by sequencing, revealing unique immune responses within the lung microenvironment of patients with COVID.


Assuntos
COVID-19 , Proteômica , Humanos , Proteômica/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Pulmão , Análise de Célula Única/métodos
4.
Front Immunol ; 13: 981825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211386

RESUMO

Highly multiplexed, single-cell imaging has revolutionized our understanding of spatial cellular interactions associated with health and disease. With ever-increasing numbers of antigens, region sizes, and sample sizes, multiplexed fluorescence imaging experiments routinely produce terabytes of data. Fast and accurate processing of these large-scale, high-dimensional imaging data is essential to ensure reliable segmentation and identification of cell types and for characterization of cellular neighborhoods and inference of mechanistic insights. Here, we describe RAPID, a Real-time, GPU-Accelerated Parallelized Image processing software for large-scale multiplexed fluorescence microscopy Data. RAPID deconvolves large-scale, high-dimensional fluorescence imaging data, stitches and registers images with axial and lateral drift correction, and minimizes tissue autofluorescence such as that introduced by erythrocytes. Incorporation of an open source CUDA-driven, GPU-assisted deconvolution produced results similar to fee-based commercial software. RAPID reduces data processing time and artifacts and improves image contrast and signal-to-noise compared to our previous image processing pipeline, thus providing a useful tool for accurate and robust analysis of large-scale, multiplexed, fluorescence imaging data.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos
5.
Immunity ; 55(6): 1118-1134.e8, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35447093

RESUMO

Understanding the mechanisms of HIV tissue persistence necessitates the ability to visualize tissue microenvironments where infected cells reside; however, technological barriers limit our ability to dissect the cellular components of these HIV reservoirs. Here, we developed protein and nucleic acid in situ imaging (PANINI) to simultaneously quantify DNA, RNA, and protein levels within these tissue compartments. By coupling PANINI with multiplexed ion beam imaging (MIBI), we measured over 30 parameters simultaneously across archival lymphoid tissues from healthy or simian immunodeficiency virus (SIV)-infected nonhuman primates. PANINI enabled the spatial dissection of cellular phenotypes, functional markers, and viral events resulting from infection. SIV infection induced IL-10 expression in lymphoid B cells, which correlated with local macrophage M2 polarization. This highlights a potential viral mechanism for conditioning an immunosuppressive tissue environment for virion production. The spatial multimodal framework here can be extended to decipher tissue responses in other infectious diseases and tumor biology.


Assuntos
Infecções por HIV , Ácidos Nucleicos , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD4-Positivos , Vírus de DNA , Terapia de Imunossupressão , Macaca mulatta , Macrófagos , Vírus da Imunodeficiência Símia/fisiologia , Carga Viral
6.
Comput Med Imaging Graph ; 95: 102013, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864359

RESUMO

Emerging multiplexed imaging platforms provide an unprecedented view of an increasing number of molecular markers at subcellular resolution and the dynamic evolution of tumor cellular composition. As such, they are capable of elucidating cell-to-cell interactions within the tumor microenvironment that impact clinical outcome and therapeutic response. However, the rapid development of these platforms has far outpaced the computational methods for processing and analyzing the data they generate. While being technologically disparate, all imaging assays share many computational requirements for post-collection data processing. As such, our Image Analysis Working Group (IAWG), composed of researchers in the Cancer Systems Biology Consortium (CSBC) and the Physical Sciences - Oncology Network (PS-ON), convened a workshop on "Computational Challenges Shared by Diverse Imaging Platforms" to characterize these common issues and a follow-up hackathon to implement solutions for a selected subset of them. Here, we delineate these areas that reflect major axes of research within the field, including image registration, segmentation of cells and subcellular structures, and identification of cell types from their morphology. We further describe the logistical organization of these events, believing our lessons learned can aid others in uniting the imaging community around self-identified topics of mutual interest, in designing and implementing operational procedures to address those topics and in mitigating issues inherent in image analysis (e.g., sharing exemplar images of large datasets and disseminating baseline solutions to hackathon challenges through open-source code repositories).


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias , Diagnóstico por Imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Software , Microambiente Tumoral
7.
Front Immunol ; 12: 729845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938283

RESUMO

Non-human primate (NHP) animal models are an integral part of the drug research and development process. For some biothreat pathogens, animal model challenge studies may offer the only possibility to evaluate medical countermeasure efficacy. A thorough understanding of host immune responses in such NHP models is therefore vital. However, applying antibody-based immune characterization techniques to NHP models requires extensive reagent development for species compatibility. In the case of studies involving high consequence pathogens, further optimization for use of inactivated samples may be required. Here, we describe the first optimized CO-Detection by indEXing (CODEX) multiplexed tissue imaging antibody panel for deep profiling of spatially resolved single-cell immune responses in rhesus macaques. This 21-marker panel is composed of a set of 18 antibodies that stratify major immune cell types along with a set three Ebola virus (EBOV)-specific antibodies. We validated these two sets of markers using immunohistochemistry and CODEX in fully inactivated Formalin-Fixed Paraffin-Embedded (FFPE) tissues from mock and EBOV challenged macaques respectively and provide an efficient framework for orthogonal validation of multiple antibody clones using CODEX multiplexed tissue imaging. We also provide the antibody clones and oligonucleotide tag sequences as a valuable resource for other researchers to recreate this reagent set for future studies of tissue immune responses to EBOV infection and other diseases.


Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Imunidade , Imuno-Histoquímica/métodos , Animais , Modelos Animais de Doenças , Doença pelo Vírus Ebola/diagnóstico por imagem , Doença pelo Vírus Ebola/patologia , Doença pelo Vírus Ebola/virologia , Leucócitos/imunologia , Macaca mulatta , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos
8.
Nat Commun ; 12(1): 6726, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795254

RESUMO

Cutaneous T cell lymphomas (CTCL) are rare but aggressive cancers without effective treatments. While a subset of patients derive benefit from PD-1 blockade, there is a critically unmet need for predictive biomarkers of response. Herein, we perform CODEX multiplexed tissue imaging and RNA sequencing on 70 tumor regions from 14 advanced CTCL patients enrolled in a pembrolizumab clinical trial (NCT02243579). We find no differences in the frequencies of immune or tumor cells between responders and non-responders. Instead, we identify topographical differences between effector PD-1+ CD4+ T cells, tumor cells, and immunosuppressive Tregs, from which we derive a spatial biomarker, termed the SpatialScore, that correlates strongly with pembrolizumab response in CTCL. The SpatialScore coincides with differences in the functional immune state of the tumor microenvironment, T cell function, and tumor cell-specific chemokine recruitment and is validated using a simplified, clinically accessible tissue imaging platform. Collectively, these results provide a paradigm for investigating the spatial balance of effector and suppressive T cell activity and broadly leveraging this biomarker approach to inform the clinical use of immunotherapies.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoterapia/métodos , Linfoma Cutâneo de Células T/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/terapia , Idoso , Antineoplásicos Imunológicos/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Ativação Linfocitária/imunologia , Linfoma Cutâneo de Células T/imunologia , Linfoma Cutâneo de Células T/metabolismo , Masculino , Pessoa de Meia-Idade , Micose Fungoide/imunologia , Micose Fungoide/metabolismo , Micose Fungoide/terapia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Síndrome de Sézary/imunologia , Síndrome de Sézary/metabolismo , Síndrome de Sézary/terapia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Resultado do Tratamento
9.
Cell Rep Med ; 2(10): 100421, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34604819

RESUMO

Understanding viral tropism is an essential step toward reducing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, decreasing mortality from coronavirus disease 2019 (COVID-19) and limiting opportunities for mutant strains to arise. Currently, little is known about the extent to which distinct tissue sites in the human head and neck region and proximal respiratory tract selectively permit SARS-CoV-2 infection and replication. In this translational study, we discover key variabilities in expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential SARS-CoV-2 entry factors, among the mucosal tissues of the human proximal airways. We show that SARS-CoV-2 infection is present in all examined head and neck tissues, with a notable tropism for the nasal cavity and tracheal mucosa. Finally, we uncover an association between smoking and higher SARS-CoV-2 viral infection in the human proximal airway, which may explain the increased susceptibility of smokers to developing severe COVID-19. This is at least partially explained by differences in interferon (IFN)-ß1 levels between smokers and non-smokers.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/transmissão , Mucosa Respiratória/metabolismo , Serina Endopeptidases/genética , Fumantes , Tropismo Viral , Idoso , Idoso de 80 Anos ou mais , COVID-19/genética , COVID-19/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/metabolismo , SARS-CoV-2/fisiologia , Traqueia/metabolismo
10.
Front Immunol ; 12: 727626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484237

RESUMO

Multiplexed imaging is a recently developed and powerful single-cell biology research tool. However, it presents new sources of technical noise that are distinct from other types of single-cell data, necessitating new practices for single-cell multiplexed imaging processing and analysis, particularly regarding cell-type identification. Here we created single-cell multiplexed imaging datasets by performing CODEX on four sections of the human colon (ascending, transverse, descending, and sigmoid) using a panel of 47 oligonucleotide-barcoded antibodies. After cell segmentation, we implemented five different normalization techniques crossed with four unsupervised clustering algorithms, resulting in 20 unique cell-type annotations for the same dataset. We generated two standard annotations: hand-gated cell types and cell types produced by over-clustering with spatial verification. We then compared these annotations at four levels of cell-type granularity. First, increasing cell-type granularity led to decreased labeling accuracy; therefore, subtle phenotype annotations should be avoided at the clustering step. Second, accuracy in cell-type identification varied more with normalization choice than with clustering algorithm. Third, unsupervised clustering better accounted for segmentation noise during cell-type annotation than hand-gating. Fourth, Z-score normalization was generally effective in mitigating the effects of noise from single-cell multiplexed imaging. Variation in cell-type identification will lead to significant differential spatial results such as cellular neighborhood analysis; consequently, we also make recommendations for accurately assigning cell-type labels to CODEX multiplexed imaging.


Assuntos
Diagnóstico por Imagem/métodos , Análise de Célula Única/métodos , Algoritmos , Análise por Conglomerados , Colo/citologia , Colo/diagnóstico por imagem , Humanos
11.
Nat Protoc ; 16(8): 3802-3835, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34215862

RESUMO

Advances in multiplexed imaging technologies have drastically improved our ability to characterize healthy and diseased tissues at the single-cell level. Co-detection by indexing (CODEX) relies on DNA-conjugated antibodies and the cyclic addition and removal of complementary fluorescently labeled DNA probes and has been used so far to simultaneously visualize up to 60 markers in situ. CODEX enables a deep view into the single-cell spatial relationships in tissues and is intended to spur discovery in developmental biology, disease and therapeutic design. Herein, we provide optimized protocols for conjugating purified antibodies to DNA oligonucleotides, validating the conjugation by CODEX staining and executing the CODEX multicycle imaging procedure for both formalin-fixed, paraffin-embedded (FFPE) and fresh-frozen tissues. In addition, we describe basic image processing and data analysis procedures. We apply this approach to an FFPE human tonsil multicycle experiment. The hands-on experimental time for antibody conjugation is ~4.5 h, validation of DNA-conjugated antibodies with CODEX staining takes ~6.5 h and preparation for a CODEX multicycle experiment takes ~8 h. The multicycle imaging and data analysis time depends on the tissue size, number of markers in the panel and computational complexity.


Assuntos
Anticorpos/química , DNA/química , Análise de Célula Única/métodos , Animais , Biomarcadores , Diagnóstico por Imagem , Haplorrinos , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Inclusão em Parafina , Reprodutibilidade dos Testes , Fixação de Tecidos/métodos
12.
Cell Metab ; 33(8): 1565-1576.e5, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081912

RESUMO

Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic ß cells can be infected by SARS-CoV-2 and cause ß cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in ß cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic ß cells in patients who succumbed to COVID-19 and selectively infects human islet ß cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces ß cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic ß cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce ß cell killing.


Assuntos
COVID-19/virologia , Diabetes Mellitus/virologia , Células Secretoras de Insulina/virologia , Neuropilina-1/metabolismo , Receptores Virais/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus , Células A549 , Adulto , Idoso , Idoso de 80 Anos ou mais , Enzima de Conversão de Angiotensina 2/metabolismo , Antígenos CD/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , COVID-19/complicações , COVID-19/diagnóstico , Estudos de Casos e Controles , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores da Transferrina/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
Eur J Immunol ; 51(5): 1262-1277, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548142

RESUMO

Multiparameter tissue imaging enables analysis of cell-cell interactions in situ, the cellular basis for tissue structure, and novel cell types that are spatially restricted, giving clues to biological mechanisms behind tissue homeostasis and disease. Here, we streamlined and simplified the multiplexed imaging method CO-Detection by indEXing (CODEX) by validating 58 unique oligonucleotide barcodes that can be conjugated to antibodies. We showed that barcoded antibodies retained their specificity for staining cognate targets in human tissue. Antibodies were visualized one at a time by adding a fluorescently labeled oligonucleotide complementary to oligonucleotide barcode, imaging, stripping, and repeating this cycle. With this we developed a panel of 46 antibodies that was used to stain five human lymphoid tissues: three tonsils, a spleen, and a LN. To analyze the data produced, an image processing and analysis pipeline was developed that enabled single-cell analysis on the data, including unsupervised clustering, that revealed 31 cell types across all tissues. We compared cell-type compositions within and directly surrounding follicles from the different lymphoid organs and evaluated cell-cell density correlations. This sequential oligonucleotide exchange technique enables a facile imaging of tissues that leverages pre-existing imaging infrastructure to decrease the barriers to broad use of multiplexed imaging.


Assuntos
Anticorpos , Histocitoquímica/métodos , Imagem Molecular/métodos , Oligonucleotídeos , Comunicação Celular , Contagem de Células , Humanos , Hibridização In Situ/métodos , Tecido Linfoide , Especificidade de Órgãos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Célula Única/métodos
14.
Calcif Tissue Int ; 108(2): 265-276, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33068139

RESUMO

ALDH2 inactivating mutation (ALDH2*2) is the most abundant mutation leading to bone morphological aberration. Osteoporosis has long been associated with changes in bone biomaterial in elderly populations. Such changes can be exacerbated with elevated ethanol consumption and in subjects with impaired ethanol metabolism, such as carriers of aldehyde dehydrogenase 2 (ALDH2)-deficient gene, ALDH2*2. So far, little is known about bone compositional changes besides a decrease in mineralization. Raman spectroscopic imaging has been utilized to study the changes in overall composition of C57BL/6 female femur bone sections, as well as in compound spatial distribution. Raman maps of bone sections were analyzed using multilinear regression with these four isolated components, resulting in maps of their relative distribution. A 15-week treatment of both wild-type (WT) and ALDH2*2/*2 mice with 20% ethanol in the drinking water resulted in a significantly lower mineral content (p < 0.05) in the bones. There was no significant change in mineral and collagen content due to the mutation alone (p > 0.4). Highly localized islets of elongated adipose tissue were observed on most maps. Elevated fat content was found in ALDH2*2 knock-in mice consuming ethanol (p < 0.0001) and this effect appeared cumulative. This work conclusively demonstrates that that osteocytes in femurs of older female mice accumulate fat, as has been previously theorized, and that fat accumulation is likely modulated by levels of acetaldehyde, the ethanol metabolite.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Aldeído-Desidrogenase Mitocondrial/genética , Osso Cortical , Etanol , Fêmur , Acetaldeído , Animais , Etanol/administração & dosagem , Feminino , Camundongos , Camundongos Endogâmicos C57BL
16.
Nat Commun ; 11(1): 5453, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116139

RESUMO

The coronavirus SARS-CoV-2 is the causative agent of the ongoing severe acute respiratory disease pandemic COVID-19. Tissue and cellular tropism is one key to understanding the pathogenesis of SARS-CoV-2. We investigate the expression and subcellular localization of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), within the upper (nasal) and lower (pulmonary) respiratory tracts of human donors using a diverse panel of banked tissues. Here, we report our discovery that the ACE2 receptor protein robustly localizes within the motile cilia of airway epithelial cells, which likely represents the initial or early subcellular site of SARS-CoV-2 viral entry during host respiratory transmission. We further determine whether ciliary ACE2 expression in the upper airway is influenced by patient demographics, clinical characteristics, comorbidities, or medication use, and show the first mechanistic evidence that the use of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARBs) does not increase susceptibility to SARS-CoV-2 infection through enhancing the expression of ciliary ACE2 receptor. These findings are crucial to our understanding of the transmission of SARS-CoV-2 for prevention and control of this virulent pathogen.


Assuntos
Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Infecções por Coronavirus/patologia , Expressão Gênica/efeitos dos fármacos , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Sistema Respiratório/patologia , Fatores Etários , Enzima de Conversão de Angiotensina 2 , COVID-19 , Cílios/metabolismo , Infecções por Coronavirus/virologia , Células Endoteliais , Células Caliciformes/metabolismo , Humanos , Pulmão/patologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Fatores Sexuais , Sinusite/metabolismo , Fumar
17.
Cell ; 182(5): 1341-1359.e19, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32763154

RESUMO

Antitumoral immunity requires organized, spatially nuanced interactions between components of the immune tumor microenvironment (iTME). Understanding this coordinated behavior in effective versus ineffective tumor control will advance immunotherapies. We re-engineered co-detection by indexing (CODEX) for paraffin-embedded tissue microarrays, enabling simultaneous profiling of 140 tissue regions from 35 advanced-stage colorectal cancer (CRC) patients with 56 protein markers. We identified nine conserved, distinct cellular neighborhoods (CNs)-a collection of components characteristic of the CRC iTME. Enrichment of PD-1+CD4+ T cells only within a granulocyte CN positively correlated with survival in a high-risk patient subset. Coupling of tumor and immune CNs, fragmentation of T cell and macrophage CNs, and disruption of inter-CN communication was associated with inferior outcomes. This study provides a framework for interrogating how complex biological processes, such as antitumoral immunity, occur through concerted actions of cells and spatial domains.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Invasividade Neoplásica/imunologia , Antígeno B7-H1/imunologia , Biomarcadores Tumorais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Masculino , Microambiente Tumoral/imunologia
18.
medRxiv ; 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32511516

RESUMO

We investigated the expression and subcellular localization of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), within the upper (nasal) and lower (pulmonary) respiratory tracts of healthy human donors. We detected ACE2 protein expression within the cilia organelle of ciliated airway epithelial cells, which likely represents the initial or early subcellular site of SARS-CoV-2 viral entry during respiratory transmission. We further determined whether ACE2 expression in the cilia of upper respiratory cells was influenced by patient demographics, clinical characteristics, co-morbidities, or medication use, and found no evidence that the use of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARBs) increases ACE2 protein expression.

20.
Commun Biol ; 3(1): 213, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382044

RESUMO

Single-cell omics provide insight into cellular heterogeneity and function. Recent technological advances have accelerated single-cell analyses, but workflows remain expensive and complex. We present a method enabling simultaneous, ultra-high throughput single-cell barcoding of millions of cells for targeted analysis of proteins and RNAs. Quantum barcoding (QBC) avoids isolation of single cells by building cell-specific oligo barcodes dynamically within each cell. With minimal instrumentation (four 96-well plates and a multichannel pipette), cell-specific codes are added to each tagged molecule within cells through sequential rounds of classical split-pool synthesis. Here we show the utility of this technology in mouse and human model systems for as many as 50 antibodies to targeted proteins and, separately, >70 targeted RNA regions. We demonstrate that this method can be applied to multi-modal protein and RNA analyses. It can be scaled by expansion of the split-pool process and effectively renders sequencing instruments as versatile multi-parameter flow cytometers.


Assuntos
Anticorpos/análise , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas/análise , RNA/análise , Análise de Célula Única/métodos , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA