Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(8)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39203428

RESUMO

Pollutant degradation and heavy-metal resistance may be important features of the rhizobia, making them promising agents for environment cleanup biotechnology. The degradation of phenanthrene, a three-ring polycyclic aromatic hydrocarbon (PAH), by the rhizobial strain Rsf11 isolated from the oil-polluted rhizosphere of alfalfa and the influence of nickel ions on this process were studied. On the basis of whole-genome and polyphasic taxonomy, the bacterium Rsf11 represent a novel species of the genus Neorhizobium, so the name Neorhizobium phenanthreniclasticum sp. nov. was proposed. Analysis of phenanthrene degradation by the Rsf1 strain revealed 1-hydroxy-2-naphthoic acid as the key intermediate and the activity of two enzymes apparently involved in PAH degradation. It was also shown that the nickel resistance of Rsf11 was connected with the extracellular adsorption of metal by EPS. The joint presence of phenanthrene and nickel in the medium reduced the degradation of PAH by the microorganism, apparently due to the inhibition of microbial growth but not due to the inhibition of the activity of the PAH degradation enzymes. Genes potentially involved in PAH catabolism and nickel resistance were discovered in the microorganism studied. N. phenanthreniclasticum strain Rsf11 can be considered as a promising candidate for use in the bioremediation of mixed PAH-heavy-metal contamination.

2.
Microorganisms ; 11(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375018

RESUMO

Microbial-assisted phytoremediation is considered a more effective approach to soil rehabilitation than the sole use of plants. Mycolicibacterium sp. Pb113 and Chitinophaga sp. Zn19, heavy-metal-resistant PGPR strains originally isolated from the rhizosphere of Miscanthus × giganteus, were used as inoculants of the host plant grown in control and zinc-contaminated (1650 mg/kg) soil in a 4-month pot experiment. The diversity and taxonomic structure of the rhizosphere microbiomes, assessed with metagenomic analysis of rhizosphere samples for the 16S rRNA gene, were studied. Principal coordinate analysis showed differences in the formation of the microbiomes, which was affected by zinc rather than by the inoculants. Bacterial taxa affected by zinc and the inoculants, and the taxa potentially involved in the promotion of plant growth as well as in assisted phytoremediation, were identified. Both inoculants promoted miscanthus growth, but only Chitinophaga sp. Zn19 contributed to significant Zn accumulation in the aboveground part of the plant. In this study, the positive effect of miscanthus inoculation with Mycolicibacterium spp. and Chitinophaga spp. was demonstrated for the first time. On the basis of our data, the bacterial strains studied may be recommended to improve the efficiency of M. × giganteus phytoremediation of zinc-contaminated soil.

3.
Life (Basel) ; 13(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36676126

RESUMO

Natural and technical phytoremediation approaches were compared for their efficacy in decontaminating oil-polluted soil. We examined 20 oil-contaminated sites of 800 to 12,000 m2 each, with different contamination types (fresh or aged) and levels (4.2-27.4 g/kg). The study was conducted on a field scale in the industrial and adjacent areas of a petroleum refinery. Technical remediation with alfalfa (Medicago sativa L.), ryegrass (Lolium perenne L.), nitrogen fertilizer, and soil agrotechnical treatment was used to clean up 10 sites contaminated by oil hydrocarbons (average concentration, 13.7 g/kg). In technical phytoremediation, the per-year decontamination of soil was as high as 72-90%, whereas in natural phytoremediation (natural attenuation with native vegetation) at 10 other oil-contaminated sites, per-year decontamination was as high as that only after 5 years. Rhizodegradation is supposed as the principal mechanisms of both phytoremediation approaches.

4.
Consort Psychiatr ; 4(1): 64-72, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38239569

RESUMO

In 2022, Mental-health Clinic No. 4 named after P. B. Gannushkin, one of the oldest mental health institutions in Russia known as Preobrazhenskaya Hospital before the October Revolution of 1917, celebrated its 245th anniversary. The history of the hospital reflects all stages of the evolution of the basic principles and aspects of mental health care in Russia. On many occasions, the institution served as a platform for eminent researchers and clinicians to achieve scientific breakthroughs and their application in practice. This article is a review of the major milestones in the history of the hospital. It highlights the great achievements of its psychiatrists and presents some previously unpublished archival documents that offer a new perspective on the history of Preobrazhenskaya Hospital.

5.
Environ Sci Pollut Res Int ; 29(56): 84702-84713, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35788480

RESUMO

Many petroleum extraction and refinement plants are located in arid climates. Therefore, the remediation of petroleum-polluted soils is complicated by the low moisture conditions. We ran a 70-day experiment to test the efficacy of various combining of remediation treatments with sorghum, yellow medick, and biochar to remove petroleum from and change the biological activity of Kastanozem, a soil typical of the dry steppes and semideserts of the temperate zone. At normal moisture, the maximum petroleum-degradation rate (40%) was obtained with sorghum-biochar. At low moisture, the petroleum-degradation rate was 22 and 30% with yellow medick alone and with yellow medick - sorghum, respectively. Biochar and the biochar-plant interaction had little effect on soil remediation. Both plants promoted the numbers of soil microbes in their rhizosphere: yellow medick promoted mostly hydrocarbon-oxidizing microorganisms, whereas sorghum promoted both hydrocarbon-oxidizing and total heterotrophic microorganisms. Low moisture did not limit microbial development. In the rhizosphere of sorghum, dehydrogenase and urease activities were maximal at normal moisture, whereas in the rhizosphere of yellow medick, they were maximal at low moisture. Peroxidase activity was promoted by the plants in unpolluted soil and was close to the control values in polluted soil. Biochar and the biochar-plant interaction did not noticeably affect the biological activity of the soil.


Assuntos
Petróleo , Poluentes do Solo , Sorghum , Petróleo/metabolismo , Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Secas , Carvão Vegetal , Hidrocarbonetos/metabolismo , Microbiologia do Solo , Plantas/metabolismo , Sorghum/metabolismo
6.
Int J Phytoremediation ; 24(2): 215-223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34098813

RESUMO

Long-term field observations of the natural vegetation cover in industrial and adjacent areas has revealed that the Boraginaceae was one of the main plant family representatives of which were noted in oil-contaminated area. In this study against the background of the previously well characterized plant families Poaceae and Fabaceae, the phytoremediation potential of Boraginaceae plants was investigated under the field conditions and described. Among the members of this family, Lithospermum arvense, Nonea pulla, Asperugo procumbens, Lappula myosotis, and Echium vulgare were the most common in oil-contaminated areas. N. pulla was the most tolerant to hydrocarbons and, along with L. arvense and E. vulgare, actively stimulated the soil microorganisms, including hydrocarbon-oxidizing ones, in their rhizosphere. A comparative assay confirmed that the plants of the Fabaceae family as a whole more efficiently enrich the soil both with available nitrogen and with pollutant degradation genes. Nevertheless, the comparatively high ammonium nitrogen content in the rhizosphere of N. pulla and E. vulgare allows these species to be singled out to explain their high rhizosphere effect, and to suggest their remediation potential for oil-contaminated soil.Novelty statement Against the background of the previously well characterized plant families Poaceae and Fabaceae, the remediation potential of Boraginaceae plants was described for the first time. Overall, this study contributes to understanding the differences in remediation potential of plants at the family level and suggests the monitoring pollutant degradation genes as an informative tool to the search for plant promising for use in the cleanup of oil-contaminated soil.


Assuntos
Boraginaceae , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
7.
Microbiol Res ; 253: 126885, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34624611

RESUMO

This research was focused on the isolation and characterization of a PAH-catabolizing mycobacterial strain from the petroleum hydrocarbon-contaminated rhizosphere of alfalfa, as well as on revealing some points of interaction between the microorganism and the plant. Mycolicibacterium sp. PAM1, a pyrene degrader isolated from the niche of interest to us, can catabolize fluoranthene, anthracene, fluorene, and phenanthrene. On the basis of curves of PAM1 growth with different PAHs as the sole carbon sources and on the basis of PAH-degradation rates, we found that pollutant availability to the strain decreased in the sequence phenanthrene > fluorene > fluoranthene ∼ pyrene > anthracene. For each PAH, the catabolic products were identified. PAM1 was found to have the functional genes nidA and nidB. New data modeling the 2D and 3D structures, intrinsic structural disorder, and molecular dynamics of the nidA and nidB gene products were obtained. The identified genes and intermediates of pyrene degradation indicate that PAM1 has a PAH catabolic pathway that is peculiar to known mycobacterial pyrene degraders. PAM1 utilized some components of alfalfa root exudates as nutrients and promoted plant growth. The use of mycobacterial partners of alfalfa is attractive for enhancing the phytoremediation of PAH-contaminated soils.


Assuntos
Interações entre Hospedeiro e Microrganismos , Medicago sativa , Mycobacteriaceae , Hidrocarbonetos Policíclicos Aromáticos , Antracenos , Fluorenos , Interações entre Hospedeiro e Microrganismos/fisiologia , Medicago sativa/microbiologia , Mycobacteriaceae/metabolismo , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/metabolismo , Rizosfera
8.
Ocul Surf ; 18(4): 936-962, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32504856

RESUMO

The mission of the Tear Film & Ocular Surface Society (TFOS) is to advance the research, literacy, and educational aspects of the scientific field of the tear film and ocular surface. Fundamental to fulfilling this mission is the TFOS Global Ambassador program. TFOS Ambassadors are dynamic and proactive experts, who help promote TFOS initiatives, such as presenting the conclusions and recommendations of the recent TFOS DEWS II™, throughout the world. They also identify unmet needs, and propose future clinical and scientific solutions, for management of ocular surface diseases in their countries. This meeting report addresses such needs and solutions for 25 European countries, as detailed in the TFOS European Ambassador meeting in Rome, Italy, in September 2019.


Assuntos
Síndromes do Olho Seco , Congressos como Assunto , Europa (Continente) , Olho , Humanos , Itália , Lágrimas
9.
Fungal Biol ; 122(5): 363-372, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29665962

RESUMO

The degradation of two isomeric three-ringed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus D1 and the litter-decomposing fungus Agaricus bisporus F-8 was studied. Despite some differences, the degradation of phenanthrene and anthracene followed the same scheme, forming quinone metabolites at the first stage. The further fate of these metabolites was determined by the composition of the ligninolytic enzyme complexes of the fungi. The quinone metabolites of phenanthrene and anthracene produced in the presence of only laccase were observed to accumulate, whereas those formed in presence of laccase and versatile peroxidase were metabolized further to form products that were further included in basal metabolism (e.g. phthalic acid). Laccase can catalyze the initial attack on the PAH molecule, which leads to the formation of quinones, and that peroxidase ensures their further oxidation, which eventually leads to PAH mineralization. A. bisporus, which produced only laccase, metabolized phenanthrene and anthracene to give the corresponding quinones as the dominant metabolites. No products of further utilization of these compounds were detected. Thus, the fungi's affiliation with different ecophysiological groups and their cultivation conditions affect the composition and dynamics of production of the ligninolytic enzyme complex and the completeness of PAH utilization.


Assuntos
Agaricus/metabolismo , Pleurotus/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biotransformação , Redes e Vias Metabólicas , Oxirredutases/metabolismo , Quinonas/metabolismo , Microbiologia do Solo , Madeira/microbiologia
10.
Environ Sci Pollut Res Int ; 25(4): 3260-3274, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29147987

RESUMO

The result of monitoring of natural vegetation growing on oil-contaminated (2.0-75.6 g/kg) and uncontaminated (0.04-2.0 g/kg) soils of a petroleum refinery for a period of 13 years is presented. Floristic studies showed that the families Poaceae, Asteraceae, Fabaceae, and eventually Brassicaceae were predominant in the vegetation cover of both types of soils. Over time, the projective vegetation cover of the contaminated sites increased from 46 to 90%; the species diversity increased twofold: in the ecological-cenotic structure of the flora, the number of ruderal plant species decreased; and the number of steppe, i.e., zonal, plant species increased. Using 62 dominant plant species, we conducted a field study of plant characteristics such as resistance to oil pollution, the ability to enrich the rhizosphere soil with microorganisms and bioavailable mineral nitrogen, and reduction of the concentration of petroleum hydrocarbons. The results enable us to characterize the phytoremediation potential (PRP) of the native plants and identify species that, probably, played a key role in the natural restoration of oil-contaminated soils. Statistical analysis showed correlations between the PRP constituents, and the leading role of rhizosphere microorganisms in the rhizodegradation of petroleum hydrocarbons was proven. A conditional value of PRP was proposed which allowed the investigated plants to be ranked in 11 classes. The study of a large sample of plant species showed that some plants held promise for the use in reclamation of soils in arid steppe zone, and that other species can be used for the rehabilitation of saline soils and semideserts.


Assuntos
Hidrocarbonetos/metabolismo , Campos de Petróleo e Gás , Plantas/classificação , Plantas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Monitoramento Ambiental , Hidrocarbonetos/análise , Nitrogênio/metabolismo , Rizosfera , Federação Russa , Solo/química , Poluentes do Solo/análise
11.
Chemosphere ; 169: 224-232, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27880920

RESUMO

Peroxidases from root exudates of sorghum (Sorghum bicolor L. Moench) and alfalfa (Medicago sativa L.) were purified and characterized, and their ability to oxidize native PAHs and PAH-derivatives was evaluated. The obtained data confirm that peroxidases are involved in the rhizosphere degradation of PAHs. Nondenaturing PAGE showed that the peroxidases of both plants were represented by a range of isoforms/isoenzymes (five to eight). Minor forms were lost during further purification, and as a result, the major anionic form from alfalfa root exudates and the major cationic form from those of sorghum were obtained. Both electrophoretically homogeneous peroxidases were monomeric proteins with a molecular weight of about 46-48 kDa. The pH optima and the main catalytic constants for the test substrates were determined. On the basis of their molecular and catalytic properties, the obtained enzymes were found to be typical plant peroxidases. Derivatives of PAHs and potential products of their microbial degradation (9-phenanthrol and 9,10-phenanthrenequinone), unlike the parent PAH (phenanthrene), inhibited the catalytic activity of the peroxidases, possibly indicating greater availability of the enzymes' active centers to these substances. Peroxidase-catalyzed decreases in the concentrations of a number of PAHs and their derivatives were observed. Sorghum peroxidase oxidized anthracene and phenanthrene, while alfalfa peroxidase oxidized only phenanthrene. 1-Hydroxy-2-naphthoic acid was best oxidized by peroxidase of alfalfa. However, quinone derivatives of PAHs were unavailable to sorghum peroxidase, but were oxidized by alfalfa peroxidase. These results indicate that the major peroxidases from root exudates of alfalfa and sorghum can have a role in the rhizosphere degradation of PAHs.


Assuntos
Medicago sativa/enzimologia , Peroxidases/metabolismo , Exsudatos de Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Sorghum/enzimologia , Biodegradação Ambiental , Naftóis , Oxirredutases/metabolismo , Fenantrenos , Raízes de Plantas/metabolismo , Rizosfera , Poluentes do Solo/análise
12.
J Plant Physiol ; 188: 1-8, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26398627

RESUMO

We studied the catabolism of the polycyclic aromatic hydrocarbon phenanthrene by four rhizobacterial strains and the possibility of enzymatic oxidation of this compound and its microbial metabolites by the root exudates of alfalfa (Medicago sativa L.) in order to detect the possible coupling of the plant and microbial metabolisms under the rhizospheric degradation of the organic pollutant. A comparative study of phenanthrene degradation pathways in the PAH-degrading rhizobacteria Ensifer meliloti, Pseudomonas kunmingensis, Rhizobium petrolearium, and Stenotrophomonas sp. allowed us to identify the key metabolites from the microbial transformation of phenanthrene, including 9,10-phenanthrenequinone, 2-carboxybenzaldehyde, and 1-hydroxy-2-naphthoic, salicylic, and o-phthalic acids. Sterile alfalfa plants were grown in the presence and absence of phenanthrene (0.03 g kg(-1)) in quartz sand under controlled environmental conditions to obtain plant root exudates. The root exudates were collected, concentrated by ultrafiltration, and the activity of oxidoreductases was detected spectrophotometrically by the oxidation rate for various substrates. The most marked activity was that of peroxidase, whereas the presence of oxidase and tyrosinase was detected on the verge of the assay sensitivity. Using alfalfa root exudates as a crude enzyme preparation, we found that in the presence of the synthetic mediator, the plant peroxidase could oxidize phenanthrene and its microbial metabolites. The results indicate the possibility of active participation of plants in the rhizospheric degradation of polycyclic aromatic hydrocarbons and their microbial metabolites, which makes it possible to speak about the coupling of the plant and microbial catabolisms of these contaminants in the rhizosphere.


Assuntos
Bacilos e Cocos Aeróbios Gram-Negativos/metabolismo , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Fenantrenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas/metabolismo , Rhizobiaceae/metabolismo , Rizosfera , Stenotrophomonas/metabolismo
13.
Med Phys ; 39(6): 3262-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22755709

RESUMO

PURPOSE: A linac delivering intensity-modulated radiotherapy (IMRT) can benefit from a flattening filter free (FFF) design which offers higher dose rates and reduced accelerator head scatter than for conventional (flattened) delivery. This reduction in scatter simplifies beam modeling, and combining a Monte Carlo dose engine with a FFF accelerator could potentially increase dose calculation accuracy. The objective of this work was to model a FFF machine using an adapted version of a previously published virtual source model (VSM) for Monte Carlo calculations and to verify its accuracy. METHODS: An Elekta Synergy linear accelerator operating at 6 MV has been modified to enable irradiation both with and without the flattening filter (FF). The VSM has been incorporated into a commercially available treatment planning system (Monaco™ v 3.1) as VSM 1.6. Dosimetric data were measured to commission the treatment planning system (TPS) and the VSM adapted to account for the lack of angular differential absorption and general beam hardening. The model was then tested using standard water phantom measurements and also by creating IMRT plans for a range of clinical cases. RESULTS: The results show that the VSM implementation handles the FFF beams very well, with an uncertainty between measurement and calculation of <1% which is comparable to conventional flattened beams. All IMRT beams passed standard quality assurance tests with >95% of all points passing gamma analysis (γ < 1) using a 3%/3 mm tolerance. CONCLUSIONS: The virtual source model for flattened beams was successfully adapted to a flattening filter free beam production. Water phantom and patient specific QA measurements show excellent results, and comparisons of IMRT plans generated in conventional and FFF mode are underway to assess dosimetric uncertainties and possible improvements in dose calculation and delivery.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Interface Usuário-Computador , Humanos , Masculino , Neoplasias/radioterapia , Imagens de Fantasmas , Dosagem Radioterapêutica , Água
14.
Plant Physiol Biochem ; 49(6): 600-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21459011

RESUMO

We studied a model system consisting of Sorghum bicolor, phenanthrene, and an auxin-producing polycyclic aromatic hydrocarbon-degrading Sinorhizobium meliloti strain to clarify whether rhizosphere indole-3-acetic acid (IAA) takes part in the plant-pollutant-bacteria interactions. Phenanthrene and S. meliloti treatments of sorghum contributed to a decrease in the rhizosphere IAA concentration and to phytohormone accumulation, respectively. Regression analysis showed significant correlations between alteration in root-zone IAA content and alterations in the root-surface area, exudation, and rhizosphere effects for culturable heterotrophic bacteria, the S. meliloti strain, and other phenanthrene degraders. According to the data obtained, phenanthrene degraders get an advantage over nondegradative rhizobacteria from IAA for rhizosphere colonization. An IAA-dependent increase in the root-surface area leads to improved sorghum growth under pollutant stress. The carbon flux from the roots is corrected by the auxin because of its influence on the exuding-surface area and on the intensity of secretion by the root cells. On the other hand, the rhizosphere IAA pool may be plant-regulated by means of alteration in carboxylate exudation and its influence on bacterial auxin production. A scenario for the IAA-mediated S. bicolor-phenanthrene-S. meliloti interactions is proposed.


Assuntos
Ácidos Indolacéticos/metabolismo , Fenantrenos/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Rizosfera , Sinorhizobium meliloti/metabolismo , Poluentes do Solo/farmacologia , Sorghum/crescimento & desenvolvimento , Ciclo do Carbono , Ácidos Carboxílicos/metabolismo , Modelos Biológicos , Fenantrenos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Análise de Regressão , Poluentes do Solo/metabolismo , Sorghum/efeitos dos fármacos , Sorghum/microbiologia , Estresse Fisiológico
15.
Chemosphere ; 74(8): 1031-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19101015

RESUMO

The effect of the polycyclic aromatic hydrocarbon (PAH) phenanthrene on the enzymatic activity of root exudates of the phytoremediating plant Sorghum bicolor (L.) Moench was studied. Analysis of sorghum root exudates allowed us to reveal the activities of oxidase, peroxidase, and tyrosinase. The activities of these enzymes were progressive as the soil phenanthrene concentration increased. Using lyophilized samples, we found that as a result of the enzymatic activity of the root exudates, some of the PAHs and products of PAH degradation were oxidized in the reaction mixture supplemented with the mediating agents (ABTS or DL-DOPA) but that no oxidation was observed in the reaction mixtures without the mediators. The revealed enzymatic activity of the sorghum root exudates may indicate the involvement of the root-released oxidoreductases in rhizospheric degradation of PAHs and/or their derivatives. In addition, from the data obtained, the coupling of plant and microbial metabolisms of PAHs in the rhizosphere may be surmised.


Assuntos
Poluentes Ambientais/toxicidade , Oxirredutases/metabolismo , Fenantrenos/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Sorghum/efeitos dos fármacos , Sorghum/enzimologia , Biodegradação Ambiental , Relação Dose-Resposta a Droga , Poluentes Ambientais/metabolismo , Oxirredução , Fenantrenos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Dióxido de Silício , Sorghum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA