Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172088, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554975

RESUMO

Microplastics (MPs) is the second most important environmental issue and can potentially enter into food chain through farmland contamination and other means. There are no standardized extraction methods for quantification of MPs in soil. The embedded errors and biases generated serious problems regarding the comparability of different studies and leading to erroneous estimation. To address this gap, present study was formulated to develop an efficient method for MPs analysis suitable for a wide range of soil and organic matrices. A method based on Vis-NIR (Visible-Near Infra Red) spectroscopy is developed for four different soil belonging to Alfisol, Inceptisol, Mollisol and Vertisol and two organic matter matrices (FYM and Sludge). The developed method was found as rapid, reproducible, non-destructive and accurate method for estimation of all three-density groups of MPs (Low, Medium and High) with a prediction accuracy ranging from 1.9 g MPs/kg soil (Vertisol) to 3.7 g MPs/kg soil (Alfisol). Two different regression models [Partial Least Square Regression (PLSR) and Principal Component Regression (PCR)] were assessed and PLSR was found to provide better information in terms of prediction accuracy and minimum quantification limit (MQL). However, PCR performed better for organic matter matrices than PLSR. The method avoids any complicated sample preparation steps except drying and sieving thus saving time and acquisition of reflectance spectrum for single sample is possible within 18 s. Owing to have the minimum quantification limit ranging from 1.9-3.7 g/kg soil, the vis-NIR based method is perfectly suitable for estimation of MPs in soil samples collected from plastic pollution hotspots like landfill sites, regular based sludge amended farm soils. Additionally, the method can be adapted by small scale compost industries for assessing MPs load in product like city compost which are applied at agricultural fields and will be helpful in quantifying possible MPs at the sources itself.

2.
Chemosphere ; 344: 140254, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742769

RESUMO

Rare earth elements (REEs) are considered the limiting resources for advancing clean technologies and electronics. Because global REEs reserve is limited, non-conventional and secondary sources are being investigated for recovery. Here, we investigated wet and dry sand from seven Southern California beaches for sixteen REEs. These include five light REEs, two medium REEs, and nine heavy REEs, separated by their atomic weight. The mass of the magnetically separated compounds ranged from 15.19 to 129.91 g per kg of dry sand in the studied sea beaches in Southern California. The total REEs concentration ranged from 1168.1 to 6816.7 µg per kg of wet sand (dry sand basis) and 1474.7-7483.8 µg per kg of dry sand. Cerium (Ce) and Yttrium (Y) were the most prevalent REEs in these beaches ranging from 387.4 to 2241.1 µg kg-1 and 104.5-2302.3 µg kg-1 of sand respectively. This study found light REEs concentration accounted for 70-80% of total rare earth elements in the studied beaches. The concentrations of the analyzed REEs were significantly different (p < 0.05) from each other in the studied beaches. Additionally, Pearson correlation showed that the REEs were strongly correlated (r ≥ 0.83) with each other in the reported sea beaches, indicating a similar origin of the REEs. The dominant heavy metals in the studied samples were Vanadium (V), Chromium (Cr), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc (Zn), and Strontium (Sr). Dominant minerals identified in sands were quartz, anorthite, ilmenite, and xenotime. All the beaches are lowly enriched with REEs, and any of the REEs caused no ecological risk or pollution. Similarly, no pollution/ecological risk was observed for the analyzed heavy metals. This study identified beach sand as a potential REEs source and demonstrated an easy separation of REEs containing magnetic compounds from sand.


Assuntos
Metais Pesados , Metais Terras Raras , Areia , Metais Terras Raras/análise , Metais Pesados/análise , Ítrio , California
3.
Environ Sci Pollut Res Int ; 30(45): 101343-101357, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37651010

RESUMO

A greenhouse pot experiment was conducted with seven different levels of sludge (0, 5, 10, 20, 40, 80, 160 g kg-1) to assess the potential impact of sludge application on soybean (Glycine max (L.) Merr.) productivity, metal accumulation and translocation, and physico-chemical changes in acid and alkaline soils. The outcomes revealed that the application of sludge @ 5.0 to 160 g kg-1 resulted in a significant (p < 0.05) increase in seed and straw yield in both acid and alkaline soils compared to control. All the assessed heavy metals in soybean were within permissible ranges and did not exceed the phytotoxic limit, except for Fe, Zn, and Cu in the roots from the application of sewage sludge. The values of bioaccumulation factor (BFroot/soil) and translocation factor i.e., TFstraw/root and TFseed/straw were < 1.0 for Ni, Pb and Cr. Overall, for all the sludge application doses the soil pH was observed to increase in the acid soil and decline in alkaline soil when compared to the control. All the investigated heavy metals (Fe, Mn, Zn, Cu, Ni, Cd, Pb, and Cr) in the different plant tissues (root, straw and seed) of soybean were correlated with the soil variables. The study finds that sludge can be a potential organic fertilizer and function as an eco-friendly technique for the recycling of nutrients in the soil while keeping a check on the heavy metals' availability to plants.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Esgotos , Glycine max , Chumbo , Poluentes do Solo/análise , Metais Pesados/análise , Plantas
4.
Environ Monit Assess ; 195(7): 863, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336819

RESUMO

Potentially toxic metals (PTMs) contamination in the soil poses a serious danger to people's health by direct or indirect exposure, and generally it occurs by consuming food grown in these soils. The present study assessed the pollution levels and risk to human health upon sustained exposure to PTM concentrations in the area's centuries-old glass industry clusters of the city of Firozabad, Uttar Pradesh, India. Soil sampling (0-15 cm) was done in farmers' fields within a 1 km radius of six industrial clusters. Various environmental (geo-accumulation index, contamination factor, pollution load index, enrichment factor, and ecological risk index) and health risk indices (hazard quotient, carcinogenic risk) were computed to assess the extent of damage caused to the environment and the threat to human health. Results show that the mean concentrations of Cu (33 mg kg-1), Zn (82.5 mg kg-1), and Cr (15.3 mg kg-1) were at safe levels, whereas the levels of Pb, Ni, and Cd exceeded their respective threshold limits. A majority of samples (88%) showed considerable ecological risk due to the co-contamination of these six PTMs. Health risk assessment indicated tolerable cancer and non-cancer risk in both adults and children for all PTMs, except Ni, where adults were exposed to potential threat of cancer. Pearson's correlation study revealed a significant positive correlation between all six metal pairs and conducting principal component analysis (PCA) confirmed the common source of metal pollution. The PC score ranked different sites from highest to lowest according to PTM loads that help to establish the location of the source. Hierarchical cluster analysis grouped different sites into the same cluster based on similarity in PTMs load, i.e., low, medium, and high.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Intoxicação por Metais Pesados , Índia , Medição de Risco , China
5.
Molecules ; 28(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903414

RESUMO

Groundwater arsenic (As) pollution is a naturally occurring phenomenon posing serious threats to human health. To mitigate this issue, we synthesized a novel bentonite-based engineered nano zero-valent iron (nZVI-Bento) material to remove As from contaminated soil and water. Sorption isotherm and kinetics models were employed to understand the mechanisms governing As removal. Experimental and model predicted values of adsorption capacity (qe or qt) were compared to evaluate the adequacy of the models, substantiated by error function analysis, and the best-fit model was selected based on corrected Akaike Information Criterion (AICc). The non-linear regression fitting of both adsorption isotherm and kinetic models revealed lower values of error and lower AICc values than the linear regression models. The pseudo-second-order (non-linear) fit was the best fit among kinetic models with the lowest AICc values, at 57.5 (nZVI-Bare) and 71.9 (nZVI-Bento), while the Freundlich equation was the best fit among the isotherm models, showing the lowest AICc values, at 105.5 (nZVI-Bare) and 105.1 (nZVI-Bento). The adsorption maxima (qmax) predicted by the non-linear Langmuir adsorption isotherm were 354.3 and 198.5 mg g-1 for nZVI-Bare and nZVI-Bento, respectively. The nZVI-Bento successfully reduced As in water (initial As concentration = 5 mg L-1; adsorbent dose = 0.5 g L-1) to below permissible limits for drinking water (10 µg L-1). The nZVI-Bento @ 1% (w/w) could stabilize As in soils by increasing the amorphous Fe bound fraction and significantly diminish the non-specific and specifically bound fraction of As in soil. Considering the enhanced stability of the novel nZVI-Bento (upto 60 days) as compared to the unmodified product, it is envisaged that the synthesized product could be effectively used for removing As from water to make it safe for human consumption.

6.
Environ Sci Pollut Res Int ; 30(17): 50847-50863, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807853

RESUMO

Heavy metals in soil pose a serious threat through their toxic effect on the human food chain. Phytoremediation is a clean and green potentially cost-effective technology in remediating the heavy metal-contaminated soil. However, the efficiency of phytoextraction is very often limited by low phytoavailability of heavy metals in soil, slow growth, and small biomass production of hyper-accumulator plants. To solve these issues, accumulator plant(s) with high biomass production and amendment(s) which can solubilize metals in soil is required for better phytoextraction. A pot experiment was conducted to assess the efficiency of phytoextraction of sunflower, marigold, and spinach as affected by the incorporation of Sesbania (solubilizer) and addition of gypsum (solubilizer) in nickel (Ni)-, lead (Pb)-, and chromium (Cr)-contaminated soil. A fractionation study was conducted to study the bioavailability of the heavy metals in contaminated soil after growing the accumulator plants and as affected by using soil amendments (Sesbania and gypsum). Results showed that marigold was the most efficient among the three accumulator plants in phytoextraction of the heavy metals in the contaminated soil. Both sunflower and marigold were able to reduce the bioavailability of the heavy metals in the post-harvest soil, which was reflected in their (heavy metals) lower concentration in subsequently grown paddy crop (straw). The fractionation study revealed that carbonate and organically bound fractions of the heavy metals control the bioavailability of the heavy metals in the experimental soil. Both Sesbania and gypsum were not effective in solubilizing the heavy metals in the experimental soil. Therefore, the possibility of using Sesbania and gypsum for solubilizing heavy metals in contaminated soil is ruled out.


Assuntos
Calendula , Helianthus , Metais Pesados , Poluentes do Solo , Humanos , Níquel/análise , Cromo/metabolismo , Spinacia oleracea/metabolismo , Chumbo/metabolismo , Sulfato de Cálcio , Metais Pesados/análise , Biodegradação Ambiental , Solo , Plantas/metabolismo , Calendula/metabolismo , Poluentes do Solo/análise
7.
Toxics ; 11(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36668790

RESUMO

We investigated the effect of practically realizable doses of silicate on arsenic (As) uptake by differential-As-accumulating rice cultivars grown on geogenically As-polluted soil. The possible health risk from the dietary ingestion of As through rice was also assessed. In addition, a solution culture experiment was conducted to examine the role of root-secreted weak acids in differential As acquisition by rice cultivars. When grown without silicate, Badshabhog accumulated a much smaller amount of As in grain (0.11 mg kg-1) when compared to the other three varieties. Satabdi, IR-36, and Khitish accumulated As in grain beyond the permissible limit (0.2 mg kg-1) for human consumption. The application of silicate effectively reduced the As content in the grain, husk, and straw of all of the cultivars. The grain As content fell to 17.2 and 27.6% with the addition of sodium metasilicate at the rates of 250 and 500 mg kg-1, respectively. In the case of Khitish, the grain As content was brought down within permissible limits by the applied silicate (500 mg kg-1). The integrated use of low-As-accumulating cultivars and silicate has great potential to reduce the public health risks associated with As. A positive correlation between root-secreted total weak acid and grain As content could explain the different rice cultivars' differential As acquisition capacity.

8.
J Environ Qual ; 52(2): 315-327, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652262

RESUMO

Minimizing arsenic intake from food consumption is a key aspect of the public health response in arsenic (As)-contaminated regions. In many of these regions, rice is the predominant staple food. Here, we present a validated maximum allowable concentration of total As in paddy soil and provide the first derivation of a maximum allowable soil concentration for bioavailable As. We have previously used meta-analysis to predict the maximum allowable total As in soil based on decision tree (DT) and logistic regression (LR) models. The models were defined using the maximum tolerable concentration (MTC) of As in rice grains as per the codex recommendation. In the present study, we validated these models using three test data sets derived from purposely collected field data. The DT model performed better than the LR in terms of accuracy and Matthews correlation coefficient (MCC). Therefore, the DT estimated maximum allowable total As in paddy soil of 14 mg kg-1 could confidently be used as an appropriate guideline value. We further used the purposely collected field data to predict the concentration of bioavailable As in the paddy soil with the help of random forest (RF), gradient boosting machine (GBM), and LR models. The category of grain As (MTC) was considered as the dependent variable; bioavailable As (BAs), total As (TAs), pH, organic carbon (OC), available phosphorus (AvP), and available iron (AvFe) were the predictor variables. LR performed better than RF and GBM in terms of accuracy, sensitivity, specificity, kappa, precision, log loss, F1score, and MCC. From the better-performing LR model, bioavailable As (BAs), TAs, AvFe, and OC were significant variables for grain As. From the partial dependence plots (PDP) and individual conditional expectation (ICE) of the LR model, 5.70 mg kg-1 was estimated to be the limit for BAs in soil.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Grão Comestível/química , Aprendizado de Máquina , Solo , Poluentes do Solo/análise
9.
Environ Earth Sci ; 80(19): 667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603536

RESUMO

Safe levels of extractable pollutant elements in soil have not been universally established. Prediction of metal solubility in polluted soils and the subsequent transfer of these metals from soil pore water to the human food supply via crops are required for effective risk assessment from polluted soils. Thus an attempt has been made to develop a novel approach to protect human health from exposure to toxic metals through assessing risk from metal polluted soils utilised for agriculture. In this study, we assess the relative efficacy of various forms of 'free ion activity model' (FIAM) for predicting the concentration of cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn) and copper (Cu) in spinach and wheat as example crops, thereby providing an assessment of risk to human health from consumption of these crops. Free metal ion activity in soil solution was estimated using the Windermere Humic Aqueous Model VII (WHAM-VII) and the Baker soil test. Approximately 91, 81, 75, 94 and 70% of the variability in Cd, Pb, Ni, Zn and Cu content, respectively, of spinach could be described by a FIAM using an estimate of the free ion activity of the metals provided by WHAM-VII. Owing to the different concentration of ethylenediamine tetraacetic acid (EDTA) and diethylenetriamine pentaacetic acid (DTPA) used in the present experiment, higher prediction coefficients were obtained using EDTA (0.05 M), rather than DTPA (0.005 M), as the metal extractant in an integrated solubility-FIAM model. Out of three formulations, the FIAM, based on free ion activity of metals in soil pore water, determined from solution extracted with Rhizon samplers, was distinctly superior to the other formulations in predicting metal uptake by spinach and wheat. A safe level of extractable metal in soil was prescribed using a hazard quotient derived from predicted plant metal content and estimated dietary intake of wheat and spinach by a human population. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12665-021-09988-7.

10.
Chemosphere ; 243: 125408, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31770700

RESUMO

Bioavailability and ecotoxicity of metals in contaminated soils depend largely on their solubility. The present investigation was carried out to predict the free ion activity of Zn2+, Cu2+, Ni2+, Pb2+ and Cd2+ in contaminated soils as a function of pH, organic carbon content and extractable metal concentration. Twenty-five composite soil samples were collected from various locations which had a history of receiving sewage sludge (Keshopur and IARI, Delhi), municipal solid waste (Kolkata, West Bengal), polluted river water (Madanpur, Delhi) and industrial effluents (Debari, Rajasthan and Sonepat, Haryana). Four composite soil samples were also collected from adjacent fields which had not received contaminated amendments. Free ion activities (-log10 values), viz. pZn2+, pCu2+, pNi2+, pPb2+ and pCd2+ as measured by the Baker soil test, were 10.1 ± 1.12, 13.4 ± 1.23, 12.9 ± 0.85, 11.6 ± 0.74 and 12.6 ± 2.26, respectively. Free metal ion activities were also determined using the geochemical speciation model WHAM-VII following extraction of soil solution with porous Rhizon samplers from the rhizosphere of growing plants. pH dependent Freundlich model based on soil properties could explain the variation in pZn2+, pCu2+, pNi2+, pPb2+ and pCd2+ to the extent of 84, 52, 73, 60 and 70%, respectively, in the case of data from Rhizon samplers coupled with speciation modelling. Whereas, C-Q model could explain 84, 57, 82, 72 and 74% variability in pZn2+, pCu2+, pNi2+, pPb2+ and pCd2+, respectively, based on soil properties and free metal ion activity as determined with integrated use of Rhizon-WHAM-VII. Modelling approach was superior compared to that based on the Baker soil test solution.


Assuntos
Metais Pesados/análise , Metais/análise , Poluentes do Solo/análise , Solo/química , Disponibilidade Biológica , Poluição Ambiental/análise , Índia , Íons/química , Metais/química , Metais Pesados/química , Rios/química , Esgotos/química , Solubilidade
11.
Chemosphere ; 234: 419-426, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31229706

RESUMO

In view of limited information, a laboratory experiment was conducted to study the stability of organo-arsenic complexes as affected by competing anions i.e. phosphate, nitrate and sulphate. For this purpose, humic acid (HA) and fulvic acid (FA) were extracted from farmyard manure (FYM), vermicompost (VC), sugarcane bagasse (SB) and soil. A pot experiment was also conducted with 4 levels each of arsenic (As) (10, 20, 30 and 40  mg  kg-1) and amendments (no amendment, FYM, VC and SB at the rate of 10  t  ha-1 each). Results indicate that stability of FA extracted from sugarcane bagasse have the highest stability constant (log K) as 9.77 and the corresponding mole ratio (x) value of 1.51. The phosphate was the most effective in replacing As from organo-As complexes followed by sulphate and nitrate. Under pot culture study, As content in wheat grain was the lowest in sugarcane bagasse amended soil followed by FYM and VC at all levels of As application. Solubility-free ion activity model was most effective in predicting As uptake by wheat grain based on Olsen extractable As, pH and Walkley & Black organic C. Efficacy of organic amendments in reducing health hazard for intake of As through consumption of wheat grain grown on contaminated soil was also reflected in the values of hazard quotient (HQ).


Assuntos
Arsênio/farmacocinética , Poluentes do Solo/análise , Solo/química , Triticum/metabolismo , Arsênio/análise , Benzopiranos/isolamento & purificação , Benzopiranos/farmacologia , Misturas Complexas/análise , Grão Comestível/química , Substâncias Húmicas , Esterco/análise , Poluentes do Solo/farmacocinética
12.
Environ Sci Pollut Res Int ; 26(17): 17224-17235, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31012068

RESUMO

For remediating polluted soils, phytoextraction of metals received considerable attention in recent years, although slow removal of metals remained a major constraint in this approach. We, therefore, studied the effect of selected organic and inorganic amendments on the solubility of zinc (Zn), cadmium (Cd), and lead (Pb) in polluted soil and enhancing the efficacy of phytoextraction of these metals by Indian mustard (Brassica juncea cv. Pusa Vijay). For this purpose, a greenhouse experiment was conducted using a metal-polluted soil to evaluate the effect of amendments, viz. green manure (T2), EDTA (T3), sulfur (S)+S oxidizing bacteria (Thiobacillus spp.) (T4), metal-solubilizing bacteria (Pseudomonas spp.) (T5), and green manure + metal-solubilizing bacteria (T6), on solubility and bioavailability of Zn, Cd, and Pb. Distribution of metals in different soil fractions revealed that Cd content in water soluble + exchangeable fraction increased to the extent of 34.1, 523, 133, 123, and 75.8% in T2, T3, T4, T5, and T6 treatments, respectively, over control (T1). Cadmium concentrations in soil solution as extracted by Rhizon sampler were recorded as 3.78, 88.1, 11.2, 6.29, and 4.27 µg L-1in T2, T3, T4, T5, and T6, respectively, whereas soil solution concentration of Cd in T1 was 0.99 µg L-1. Activities of Cd (pCd2+) in Baker soil extract were 12.2, 10.9, 6.72, 7.74, 7.67, and 7.05 for T1, T2, T3, T4, T5, and T6, respectively. Cadmium contents in shoot were recorded as 2.74, 3.12, 4.03, 4.55, 4.68, and 4.63 mg kg-1 in T1, T2, T3, T4, T5, and T6 treatments, respectively. Similar trend in Zn and Pb content with different magnitude was also observed across the different amendments. Cadmium uptake by shoot of mustard was enhanced to the extent of 125, 62.5, 175, 175, and 212% grown on T2-, T3-, T4-, T5-, and T6-treated soil, respectively, over T1. By and large, free ion activity of metals as measured by Baker soil test proved to be the most effective index for predicting Zn, Cd, and Pb content in shoot of mustard, followed by EDTA and DTPA. Among the metal fractions, only water soluble + exchangeable metal contributed positively towards plant uptake, which explained the variation in shoot Zn, Cd, and Pb content to the extent of 74, 81, and 87%, respectively, along with other soil metal fractions. Risk to human health for intake of metals through the consumption of leafy vegetable (mustard) grown on polluted soil in terms of hazard quotient (HQ) ranged from 0.64 to 1.10 for Cd and 0.11 to 0.34 for Pb, thus rendering mustard unfit for the human consumption. Novelty of the study mainly consisted of the use of natural means and microorganisms for enhancing solubility of metals in soil with the ultimate aim of hastening the phytoremediation.


Assuntos
Cádmio/análise , Fertilizantes , Chumbo/análise , Mostardeira/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/análise , Zinco/análise , Biodegradação Ambiental , Disponibilidade Biológica , Mostardeira/química , Solo/química
13.
Ecotoxicol Environ Saf ; 144: 227-235, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28624591

RESUMO

Safe limit of arsenic in soil in relation to dietary exposure of arsenicosis patients was established in Malda district of West Bengal. Out of 182 participants examined, 80 (43.9%) participants showed clinical features of arsenicosis, characterized by arsenical skin lesion (pigmentation and keratosis), while 102 participants did not have any such lesion (control). Experimental results of the twenty eight soils (own field) of the participants showed the mean Olsen extractable and total arsenic concentration of 0.206 and 6.70mgkg-1, respectively. Arsenic concentration in rice grain ranged from 2.00 to 1260µgkg-1 with the mean value of 146µgkg-1. The hazard quotient (HQ) for intake of As by human through consumption of rice varied from 0.03 to 3.52. HQ exceeds 1.0 for drinking water and rice grain grown in the study area in many cases. As high as 77.6% variation in As content in rice grain could be explained by the solubility-free ion activity model. Toxic limit of extractable As in soil for rice in relation to soil properties and human health hazard, associated with consumption of rice grain by human, was established. For example, the permissible limit of Olsen extractable As in soil would be 0.43mgkg-1 for rice cultivation, if soil pH and organic carbon content were 7.5% and 0.50%, respectively. However, the critical limit of Olsen extractable As in soil would be 0.54mgkg-1, if soil pH and organic carbon were 8.5% and 0.75%, respectively. The conceptual framework of fixing the toxic limit of arsenic in soils with respect to soil properties and human health under modeling-framework was established.


Assuntos
Intoxicação por Arsênico/prevenção & controle , Arsênio/análise , Oryza/química , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Intoxicação por Arsênico/epidemiologia , Ingestão de Alimentos , Grão Comestível/química , Inocuidade dos Alimentos , Humanos , Índia , Modelos Teóricos , Medição de Risco , Solo/normas
14.
Environ Sci Pollut Res Int ; 23(14): 14269-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27053056

RESUMO

A case study was undertaken to assess the risk of sewage-irrigated soils in relation to the transfer of trace elements to rice and wheat grain. For this purpose, peri-urban agricultural lands under the Keshopur Effluent Irrigation Scheme (KEIS) of Delhi were selected. These agricultural lands have been receiving irrigation through sewage effluents since 1979. Sewage effluent, groundwater, soil, and plant (rice and wheat grain) samples were collected with GPS coordinates from this peri-urban area. Under wheat crop, sewage irrigation for four decades resulted into a significant buildup of zinc (141 %), copper (219 %), iron (514 %), nickel (75.0 %), and lead (28.1 %) in sewage-irrigated soils over adjacent tube well water-irrigated ones. Under rice crop, there was also a significant buildup of phosphorus (339 %), sulfur (130 %), zinc (287 %), copper (352 %), iron (457 %), nickel (258 %), lead (136 %), and cadmium (147 %) in sewage-irrigated soils as compared to that of tube well water-irrigated soils. The values of hazard quotient (HQ) for intake of trace toxic elements by humans through consumption of rice and wheat grain grown on these sewage-irrigated soils were well within the safe permissible limit. The variation in Zn, Ni, and Cd content in wheat grain could be explained by solubility-free ion activity model (FIAM) to the extent of 50.1, 56.8, and 37.2 %, respectively. Corresponding values for rice grain were 49.9, 41.2, and 42.7 %, respectively. As high as 36.4 % variation in As content in rice grain could be explained by solubility-FIAM model. Toxic limit of extractable Cd and As in soil for rice in relation to soil properties and human health hazard associated with consumption of rice grain by humans was established. A similar exercise was also done in respect of Cd for wheat. The conceptual framework of fixing the toxic limit of extractable metals and metalloid in soils with respect to soil properties and human health hazard under the modeling framework was established.


Assuntos
Poluentes do Solo/análise , Solo/química , Agricultura/métodos , Cádmio/análise , Cádmio/química , Cobre/análise , Cobre/química , Grão Comestível/química , Cadeia Alimentar , Inocuidade dos Alimentos , Água Subterrânea/análise , Água Subterrânea/química , Humanos , Ferro/análise , Ferro/química , Níquel/análise , Níquel/química , Oryza/química , Fósforo/análise , Fósforo/química , Medição de Risco , Esgotos , Poluentes do Solo/química , Triticum/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Zinco/análise , Zinco/química
15.
J Environ Biol ; 36(4): 979-84, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26364478

RESUMO

Limited information is available related to the effect of moisture and temperature on release of metals from sludge treated soils. In an incubation experiment, effect of ten levels of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142, 285 g kg(-1)), two levels of moisture (field capacity and 2.5 cm standing water) and two levels of temperature (20 and 35 degrees C) on the release of zinc and cadmium was evaluated in acid and alkaline soils. The results indicated that application of sludge was more effective in enhancing EDTA extractable Zn and Cd in acid soil than in alkaline soil. On an average, maximum increase in release of EDTA extractable Zn and Cd were 32.0 and 5.2 fold in sludge treated soil over control. There was decrease in EDTA extractable Zn and Cd by 37.7% and 25.4%, respectively under submergence as compared to that under field capacity. On an average, the amount of EDTA extractable Zn and Cd increased by 22.6% and 43.6%, respectively at 35 degrees C than that at 20 degrees C.


Assuntos
Cádmio/química , Esgotos/química , Solo/química , Zinco/química , Ácido Edético , Concentração de Íons de Hidrogênio , Temperatura , Água
16.
Environ Monit Assess ; 186(12): 8541-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25182686

RESUMO

We attempted to develop a protocol for fixing the maximum permissible limit of sludge in agricultural lands based on transfer of metals from sludge-amended soils to human food chain. For this purpose, spinach was grown as a test crop on acid and alkaline soils with graded doses of sludge (0, 1.12, 2.24, 4.48, 8.96, 17.9, 35.8, 71.6, 142 and 285 g kg(-1) of soil) in a pot experiment. Biomass yield of spinach was increased due to sludge application in both acid and alkaline soils. Among the chemical extractants, EDTA extracted the highest amount of metals from sludge-amended soil followed by diethylenetriaminepentaacetic acid (DTPA) and CaCl2. Elevated levels of Zn, Cu, Fe, Mn, Ni, Cd and Pb in spinach were observed due to sludge application over control. Application of sludge was more effective in increasing metal content in spinach grown on acid soil than alkaline soil. Solubility-free ion activity model as a function of pH, organic carbon and extractable metal was far more effective in predicting metal uptake by spinach grown on sludge-amended soils as compared to that of chemical extractants. Risk in terms of hazard quotient (HQ) for intake of metals through consumption of spinach by humans grown on sludge-treated soils was computed for different metals separately. In a 90-day pot experiment, safe rates of sludge application were worked out as 4.48 and 71.6 g kg(-1) for acid and alkaline soils, respectively.


Assuntos
Metais/análise , Poluentes do Solo/análise , Solo/química , Eliminação de Resíduos Líquidos/métodos , Agricultura/métodos , Biomassa , Monitoramento Ambiental , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA