Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Diagnostics (Basel) ; 14(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893623

RESUMO

(1) Background: The goal of this study was to analyze the reliability and validity of the Portuguese version of the SARC-F in older adults. (2) Methods: A total of 100 participants (77.1 ± 7.36 years, 73% women) were included in the study. In a first phase, the Portuguese SARC-F was adapted following the standardized forward-backward translation procedure, and internal consistency as well as inter-rater and test-retest reliability of the Portuguese SARC-F were analyzed. Secondly, clinical validation was evaluated by comparing the SARC-F total score with five operational definitions of sarcopenia and with other sarcopenia-related measurements. Discriminant validity, with respect to low muscle mass and strength and physical function were analyzed. (3) Results: The Portuguese SAR-F showed acceptable internal consistency (Cronbach α = 0.82), excellent inter-rater reliability (total score), and substantial to excellent test-retest reliability (ICC = 0.891 for the total score). Specificity ranged from 72.5% (FNIH) to 73.4 (IGWS), and negative predictive values went from 91.8% (EWGSOP1) to 97.3% (FNIH), but low sensitivity and positive predictive value were observed. The Portuguese SARC-F showed a moderate ability to discriminate people with low muscle strength (AUC = 0.78) and gait speed (AUC = 0.89). (4) Conclusions: The Portuguese SARC-F is a valid and reliable tool for ruling out sarcopenia in community-dwelling older adults and can discriminate between people with low handgrip strength and gait speed.

2.
J Phys Chem B ; 128(10): 2481-2489, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38433612

RESUMO

Porous liquids are new materials that provide permanent porosity in the liquid phase through the dispersion of nanoporous solid particles in a bulky solvent. Herein, we aim at understanding how new sustainable solvents such as deep eutectic solvent (DES) can be used to form porous stable suspensions for the capture of gases of interest for sustainable chemistry. The properties of an ionic DES, methyltriphenylphosphonium bromide/glycerol in a 1:3 molar composition, and its behavior at the interface with a metal-organic framework (MOF), ZIF-8, are here investigated by polarizable molecular dynamics simulations. The structural and dynamic properties of the DES are analyzed in the bulk liquid and in the interfacial regions with the MOF, namely, in the accessible cavities exposed at the surface. The porosity of the suspension is maintained, and it is caused not only by the Coulomb cohesive energy between cations and anions, which prevents the small anions from entering the pores, but also by the glycerol molecules not penetrating the small aperture of the ZIF-8 structure. This was further verified by simulating a system composed of glycerol and ZIF-8. Simulations with CO2 show its partition between the DES and the MOF, with higher concentrations registered in the MOF cavities.

3.
Cureus ; 16(1): e52452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371150

RESUMO

INTRODUCTION: Add-on biological monoclonal antibodies such as benralizumab (anti-IL-5Ra) are recommended by international guidelines to reduce exacerbations in severe eosinophilic asthma (SEA). However, few studies have assessed the impact of these therapies on lung function-related outcomes. Our goal was to evaluate the effectiveness of benralizumab on lung function, including lung volumes and airway resistance, in SEA patients in Portugal. METHODS: This was a real-world, observational, prospective, multicentric study including adult patients diagnosed with SEA (January-June 2023). Spirometry and plethysmography were performed at baseline (T0) and after six months of treatment (T6) with benralizumab to assess: total lung capacity (TLC), residual volume (RV), forced expiratory volume in one second (FEV1), forced vital capacity (FVC), mean forced expiratory flow between 25% and 75% of FVC (mFEF-25/75), intrathoracic gas volume (ITGV), and respiratory airway resistance (Raw). Descriptive statistics (with categorical variables described as frequencies and continuous values as mean and standard deviation (SD)) and paired t-test and Cohen's d effect size were calculated (analyses performed in StataCorp v.15.1; StataCorp LLC, TX, USA). RESULTS: Overall, 30 SEA patients were evaluated, mostly women (n=18, 60.0%), with atopy (n=22, 73.3%), a mean age of 58.4 years (SD 11.7), and assisted by pulmonology (n=19, 63.3%) or immunology-allergology (n=11, 36.7%) services. Mean eosinophilia at baseline was 1103.57 cells/mcL (SD 604.88; minimum-maximum 460-2400); after the use of benralizumab, the count dropped to zero. After six months of treatment, a significant increase (p<0.0001) in FVC (15.3%), FEV1 (22.6%), and mFEF-25/75 (17.7%) were observed from baseline (Cohen's d between 0.78 and 1.11). ITGV, RV, RV/TLC, and Raw significantly decreased (p<0.0001) during the study period (-17.3%, -29.7%, -8.9%, and -100.6%, respectively) (Cohen's d between -0.79 and -1.06). No differences in TLC were obtained (p=0.173). No differences between sexes were observed for any measure. Patients with more significant eosinophilia (>900 cells/mcL count; n=15) presented better responses in FEV1 (p=0.001) and mFEF-25/75 (p=0.007). CONCLUSIONS: A notable eosinophil depletion with add-on benralizumab led to significant improvements in SEA patients' respiratory function (static lung volumes and airway resistance) in real-world settings after six months. The significant deflating effect of benralizumab on patients' hyperinflated lungs led to enhanced expiratory flow (increased FEV1 and mFEF-25/75) and air trapping (decreased RV/TLC), suggesting this antibody improves bronchial obstruction, lung hyperinflation, and airway resistance. Further studies in a larger population are required to confirm these findings.

4.
J Phys Chem Lett ; 15(1): 248-253, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38165169

RESUMO

Intermolecular interactions in ionic liquids are mainly governed by Coulombic forces. Attraction between cations has been previously observed and was attributed to dispersion interactions between nonpolar moieties, hydrogen bonding, or π stacking. In this study, we present the intriguing behavior of tetracyanoborate anions in ionic liquids that, unlike their dicyanamide and tricyanomethanide counterparts, form dimers in both solid and liquid phases. A joint simulation and experimental study uncovers the origin of such anion-anion attraction: stabilization by induction and dispersion forces between several cyano groups, which is strong enough to overcome electrostatic repulsion. These findings open up new opportunities in the rational design of ionic liquids, where interactions between ions of the same charge can be controlled and fine-tuned by the presence of cyano groups.

5.
Nat Commun ; 14(1): 6684, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865651

RESUMO

Chemists aim to meet modern sustainability, health, and safety requirements by replacing conventional solvents with deep eutectic solvents (DESs). Through large melting point depressions, DESs may incorporate renewable solids in task-specific liquids. Yet, DES design is complicated by complex molecular interactions and a lack of comprehensive property databases. Even measuring pure component melting properties can be challenging, due to decomposition before melting. Here we overcame the decomposition of the quintessential DES constituent, choline chloride (ChCl). We measured its enthalpy of fusion (13.8 ± 3.0 kJ ⋅ mol) and melting point (687 ± 9 K) by fast scanning calorimetry combined with micro-XRD and high-speed optical microscopy. Our thermodynamically coherent fusion properties identify ChCl as an ionic plastic crystal and demonstrate negative deviations from ideal mixing for ChCl-contradicting previous assumptions. We hypothesise that the plastic crystal nature of ammonium salts governs their resilience to melting; pure or mixed. We show that DESs based on ionic plastic crystals can profit from (1) a low enthalpy of fusion and (2) favourable mixing. Both depress the melting point and can be altered through ion selection. Ionic plastic crystal-based DESs thus offer a platform for task-specific liquids at a broad range of temperatures and compositions.

6.
ACS Nano ; 17(20): 19508-19513, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812175

RESUMO

This Perspective points toward pathways to prepare porous ionic liquids using easily accessible materials, aiming for reduced environmental impact. We demonstrate that suspensions of porous solids are stable in eutectic mixtures, underscoring their potential for the preparation of porous ionic liquids. Porous ionic liquids retain the wide electrochemical window observed in their precursor pure ionic liquids, rendering them well-suited for green electrochemical reactions, particularly those involving gases whose solubility is enhanced in the porous suspensions. Moreover, their capacity as gas-rich media points to sustainable biomedical and pharmaceutical applications, provided nontoxic, biocompatible ionic liquids and porous solids are utilized.

7.
Microorganisms ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37894103

RESUMO

Secondary metabolites (SMs) from environmental bacteria offer viable solutions for various health and environmental challenges. Researchers are employing advanced bioinformatic tools to investigate less-explored microorganisms and unearth novel bioactive compounds. In this research area, our understanding of SMs from environmental Gram-negative bacteria lags behind that of its Gram-positive counterparts. In this regard, Pedobacter spp. have recently gained attention, not only for their role as plant growth promoters but also for their potential in producing antimicrobials. This study focuses on the genomic analysis of Pedobacter spp. to unveil the diversity of the SMs encoded in their genomes. Among the 41 genomes analyzed, a total of 233 biosynthetic gene clusters (BGCs) were identified, revealing the potential for the production of diverse SMs, including RiPPs (27%), terpenes (22%), hybrid SMs (17%), PKs (12%), NRPs (9%) and siderophores (6%). Overall, BGC distribution did not correlate with phylogenetic lineage and most of the BGCs showed no significant hits in the MIBiG database, emphasizing the uniqueness of the compounds that Pedobacter spp. can produce. Of all the species examined, P. cryoconitis and P. lusitanus stood out for having the highest number and diversity of BGCs. Focusing on their applicability and ecological functions, we investigated in greater detail the BGCs responsible for siderophore and terpenoid production in these species and their relatives. Our findings suggest that P. cryoconitis and P. lusitanus have the potential to produce novel mixtures of siderophores, involving bifunctional IucAC/AcD NIS synthetases, as well as carotenoids and squalene. This study highlights the biotechnological potential of Pedobacter spp. in medicine, agriculture and other industries, emphasizing the need for a continued exploration of its SMs and their applications.

8.
Sci Adv ; 9(36): eadf9706, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672585

RESUMO

Trained immunity is a long-term memory of innate immune cells, generating an improved response upon reinfection. Shigella is an important human pathogen and inflammatory paradigm for which there is no effective vaccine. Using zebrafish larvae, we demonstrate that after Shigella training, neutrophils are more efficient at bacterial clearance. We observe that Shigella-induced protection is nonspecific and has differences with training by BCG and ß-glucan. Analysis of histone ChIP-seq on trained neutrophils revealed that Shigella training deposits the active H3K4me3 mark on promoter regions of 1612 genes, dramatically changing the epigenetic landscape of neutrophils toward enhanced microbial recognition and mitochondrial ROS production. Last, we demonstrate that mitochondrial ROS plays a key role in enhanced antimicrobial activity of trained neutrophils. It is envisioned that signals and mechanisms we discover here can be used in other vertebrates, including humans, to suggest new therapeutic strategies involving neutrophils to control bacterial infection.


Assuntos
Infecções por Enterobacteriaceae , Epigênese Genética , Mycobacterium bovis , Neutrófilos , Imunidade Treinada , beta-Glucanas , Infecções por Enterobacteriaceae/imunologia , Animais , Peixe-Zebra , Larva , Neutrófilos/imunologia , Neutrófilos/metabolismo , Shigella flexneri/fisiologia , Mycobacterium bovis/imunologia , beta-Glucanas/administração & dosagem , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Healthcare (Basel) ; 11(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685429

RESUMO

OBJECTIVE: The present study aimed to explore the relationship between objective physical activity and sedentary behaviour with seasonality among a sample of older adults living in four European countries. METHODS: A sample of 169 older adults living in Croatia, Greece, Portugal, and Poland (mean age = 72.2 ± 6.0, 68% female) had valid objective physical activity and sedentary behaviour data collected in different seasons of the year: spring and autumn/winter. Physical activity and sedentary behaviour were collected with accelerometers (ActiGraph, GT3X), over 7 consecutive days, in both periods. A valid record was defined as at least two weekdays and one weekend day with 10 hours of wearing time. Analyses were performed with IBM SPSS 28.0, using t-test, ANOVA, and binary logistic regressions. RESULTS: Most older adults from the four countries met the physical activity guidelines in spring and autumn/winter. No significant variations were found across seasons for sedentary behaviour and physical activity both for light and vigorous intensity, regardless of sex, country, education, and body mass index (BMI). A decline in moderate physical activity intensity from spring to autumn/winter was found for those with lower education and higher BMI. CONCLUSION: The promotion of physical activity must be considered in programs to promote healthy aging throughout the year, especially considering the moderate intensity and those populations with higher BMI and lower educational levels.

10.
Dis Model Mech ; 16(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37161932

RESUMO

Shigella are Gram-negative bacterial pathogens responsible for bacillary dysentery (also called shigellosis). The absence of a licensed vaccine and widespread emergence of antibiotic resistance has led the World Health Organisation (WHO) to highlight Shigella as a priority pathogen requiring urgent attention. Several infection models have been useful to explore the Shigella infection process; yet, we still lack information regarding events taking place in vivo. Here, using a Shigella-zebrafish infection model and high-content microscopy, we developed an automated microscopy workflow to non-invasively study fluorescently labelled bacteria and neutrophils in vivo. We applied our workflow to antibiotic-treated zebrafish, and demonstrate that antibiotics reduce bacterial burden and not neutrophil recruitment to the hindbrain ventricle. We discovered that nalidixic acid (a bactericidal antibiotic) can work with leukocytes in an additive manner to control Shigella flexneri infection and can also restrict dissemination of Shigella sonnei from the hindbrain ventricle. We envision that our automated microscopy workflow, applied here to study the interactions between Shigella and neutrophils as well as antibiotic efficacy in zebrafish, can be useful to innovate treatments for infection control in humans.


Assuntos
Disenteria Bacilar , Shigella , Humanos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peixe-Zebra , Microscopia , Fluxo de Trabalho , Disenteria Bacilar/tratamento farmacológico
11.
Case Rep Med ; 2023: 8832242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138643

RESUMO

In the past years, the knowledge of eosinophils playing a primary pathophysiologic role in several associated conditions has led to the development of biologics targeting therapies aiming at normalizing the immune response, reducing chronic inflammation, and preventing tissue damage. To better illustrate the potential relationship between different eosinophilic immune dysfunctions and the effects of biological therapies in this scenario, here, we present a case of a 63-year-old male first referred to our department in 2018 with a diagnosis of asthma, polyposis, and rhinosinusitis and presenting a suspicion of nonsteroidal anti-inflammatory drugs' allergy. He also had a past medical history of eosinophilic gastroenteritis/duodenitis (eosinophilia counts >50 cells/high-power field HPF). The use of multiple courses of corticosteroid therapy failed to completely control these conditions. In October 2019, after starting benralizumab (an antibody directed against the alpha chain of the IL-5 cytokine receptor) as add-on treatment for severe eosinophilic asthma, important clinical improvements were reported both on the respiratory (no asthma exacerbations) and gastrointestinal systems (eosinophilia count 0 cells/HPF). Patients' quality of life also increased. Since June 2020, systemic corticosteroid therapy was reduced without worsening of gastrointestinal symptoms or eosinophilic inflammation. This case warns of the importance of early recognition and appropriate individualized treatment of eosinophilic immune dysfunctions and suggests the conduction of further larger studies on the use of benralizumab in gastrointestinal syndromes aiming at better understanding its relying mechanisms of action in the intestinal mucosa.

12.
J Phys Chem B ; 127(14): 3266-3277, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37011369

RESUMO

Porous ionic liquids, which are suspensions of nanoporous particles in ionic liquids that maintain permanent porosity, are effective and selective media for the conversion of styrene oxide into styrene carbonate, absorbing CO2 [Zhou et al. Chem. Commun. 2021, 57, 7922-7925]. Here we elucidate the mechanism of selectivity using polarizable molecular dynamics simulations, which provide a detailed view on the structure of the porous ionic liquid and on the local solvation environments of the reacting species. The porous ionic liquids studied are composed of tetradecyltrihexylphosphonium chloride, or [P66614]Cl, and the ZIF-8 zinc-methylimidazolate metal-organic framework (MOF). The CL&Pol polarizable force field was extended to represent epoxide and cyclic carbonate functional groups, allowing the ionic liquid, the reactants, and the MOF to be all represented by fully flexible, polarizable force fields, providing a detailed description of interactions. The presence of reactant and product molecules leads to changes in the structure of the ionic liquid, revealed by domain analysis. The structure of local solvation environments, namely, the arrangement of charged moieties and CO2 around the epoxide ring of the reactant molecules, clearly indicate ring-opening the reaction mechanism. The MOF acts as a reservoir of CO2 through its free volume. The solute molecules are found in the accessible outer cavities of the MOF, which promotes reaction of the epoxide with CO2 excluding other epoxide molecules, thereby preventing the formation of oligomers, which explains the selectivity toward conversion to cyclic carbonates.

13.
Cytoskeleton (Hoboken) ; 80(7-8): 266-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855298

RESUMO

Septins are evolutionarily conserved GTP-binding proteins known for their roles in cell division and host defence against Shigella infection. Although septin group members are viewed to function as hetero-oligomeric complexes, the role of individual septins within these complexes or in isolation is poorly understood. Decades of work using mouse models has shown that some septins (including SEPT7) are essential for animal development, while others (including SEPT6) are dispensable, suggesting that some septins may compensate for the absence of others. The zebrafish genome encodes 19 septin genes, representing the full complement of septin groups described in mice and humans. In this report, we characterise null mutants for zebrafish Sept6 (a member of the SEPT6 group) and Sept15 (a member of the SEPT7 group) and test their role in zebrafish development and host defence against Shigella infection. We show that null mutants for Sept6 and Sept15 are both viable, and that expression of other zebrafish septins are not significantly affected by their mutation. Consistent with previous reports using knockdown of Sept2, Sept7b, and Sept15, we show that Sept6 and Sept15 are required for host defence against Shigella infection. These results highlight Shigella infection of zebrafish as a powerful system to study the role of individual septins in vivo.


Assuntos
Disenteria Bacilar , Septinas , Animais , Disenteria Bacilar/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Septinas/genética , Septinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
J Phys Chem B ; 127(15): 3402-3415, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36867065

RESUMO

The solubility of ethane, ethylene, propane, and propylene was measured in two phosphorus-containing ionic liquids, trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, [P6,6,6,14][DiOP], and 1-butyl-3-methylimidazolium dimethylphosphate, [C4C1Im][DMP], using an isochoric saturation method. The ionic liquid [C4C1Im][DMP] absorbed between 1 and 20 molecules of gas per 1000 ion pairs, at 313 K and 0.1 MPa, while [P6,6,6,14][DiOP] absorbed up to 169 molecules of propane per 1000 ion pairs under the same conditions. [C4C1Im][DMP] had a higher capacity to absorb olefins than paraffins, while the opposite was true for [P6,6,6,14][DiOP], with the former being slightly more selective than the later. From the analysis of the thermodynamic properties of solvation, we concluded that in both ionic liquids and for all of the studied gases the solvation is ruled by the entropy, even if its contribution is unfavorable. These results, together with density measurements, 2D NMR studies, and self-diffusion coefficients suggest that the gases' solubility is ruled mostly by nonspecific interactions with the ionic liquids and that the looser ion packing in [P6,6,6,14][DiOP] makes it easier to accommodate the gases compared to [C4C1Im][DMP].

15.
Phys Chem Chem Phys ; 25(9): 6808-6816, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790213

RESUMO

Surface active ionic liquids (SAILs) combine useful characteristics of both ionic liquids (ILs) and surfactants, hence are promising candidates for a wide range of applications. However, the effect of SAIL ionic structures on their physicochemical properties remains unclear, which limits their uptake. To address this knowledge gap, in this work we investigated the density, viscosity, surface tension, and corresponding critical micelle concentration in water, as well as gas absorption of SAILs with a variety of cation and anion structures. SAILs containing anions with linear alkyl chains have smaller molar volumes than those with branched alkyl chains, because linear alkyl chains are interdigitated to a greater extent, leading to more compact packing. This interdigitation also results in SAILs being about two orders of magnitude more viscous than comparable conventional ILs. SAILs at the liquid-air interface orient alkyl chains towards the air, leading to low surface tensions closer to n-alkanes than conventional ILs. Critical temperatures of about 900 K could be estimated for all SAILs from their surface tensions. When dissolved in water, SAILs adsorb at the liquid-air interface and lower the surface tension, like conventional surfactants in water, after which micelles form. Molecular simulations show that the micelles are spherical and that lower critical micelle concentrations correspond to the formation of aggregates with a larger number of ion pairs. CO2 and N2 absorption capacities are examined and we conclude that ionic liquids with larger non-polar domains absorb larger quantities of both gases.

16.
Phys Chem Chem Phys ; 25(8): 6316-6325, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779289

RESUMO

Understanding the structure-property relationship and nanoscopic behaviour of ionic liquids is of utmost importance for their potential applications. Focusing these studies on sets of homobaric ionic liquids could provide important insight into the effects of specific chemical groups on the overall interaction profile, bringing researchers one step closer to succesfully designing ionic liquids which are tailor-made for specific applications. This work focuses on ionic liquids with 12 total carbons on their side chains, studying both their bulk physical properties (such as densities and viscosities) and their nanostructuring. The results reveal that by keeping the total number of carbons constant, but arranging them differently around the imidazolium ring, either in a linear or in a branched-chain formation, can result in compounds with quite distinct properties. Some of those (such as diffusivity) appear to be more sensitive to symmetry variations, while others (such as density) are not significantly affected. X-ray scattering is used in order to get a clearer understanding of the nanostructuring of the studied compounds and to investigate to what extent the observed macroscopic properties are directly linked to the nanoscale ordering.

17.
J Phys Chem B ; 126(47): 9901-9910, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383753

RESUMO

The efficient capture of CO2 from flue gas or directly from the atmosphere is a key subject to mitigate global warming, with several chemical and physical absorption methods previously reported. Through polarizable molecular dynamics (MD) simulations and high-level quantum chemical (QC) calculations, the physical and chemical absorption of CO2 by ionic liquids based on imidazolium cations bearing oxirane groups was investigated. The ability of the imidazolium group to absorb CO2 was found to be prevalent in both the tri- and tetraepoxidized imidazolium ionic liquids (ILs) with coordination numbers over 2 for CO2 within the first solvation shell in both systems. Thermodynamic analysis of the addition of CO2 to convert epoxy groups to cyclic carbonates also indicated that the overall reaction is exergonic for all systems tested, allowing for chemical absorption of CO2 to also be favored. The rate-determining step of the chemical absorption involved the initial opening of the epoxy ring through addition of the chloride anion and was seen to vary greatly between the epoxy groups tested. Among the groups tested, the less sterically hindered monoepoxy side of the triepoxidized imidazolium was shown to be uniquely capable of undergoing intramolecular hydrogen bonding and thus lowering the barrier required for the intermediate structure to form during the reaction. Overall, this theoretical investigation highlights the potential for epoxidized imidazolium chloride ionic liquids for simultaneous chemical and physical absorption of CO2.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Dióxido de Carbono/química , Ânions/química , Termodinâmica , Ligação de Hidrogênio
18.
Chem Sci ; 13(31): 9062-9073, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36091212

RESUMO

The branching of ionic liquid cation sidechains utilizing silicon as the backbone was explored and it was found that this structural feature leads to fluids with remarkably low density and viscosity. The relatively low liquid densities suggest a large free volume in these liquids. Argon solubility was measured using a precise saturation method to probe the relative free volumes. Argon molar solubilities were slightly higher in ionic liquids with alkylsilane and siloxane groups within the cation, compared to carbon-based branched groups. The anion size, however, showed by far the dominant effect on argon solubility. Thermodynamic solvation parameters were derived from the solubility data and the argon solvation environment was modelled utilizing the polarizable CL&Pol force field. Semiquantitative analysis was in agreement with trends established from the experimental data. The results of this investigation demonstrate design principles for targeted ionic liquids when optimisation for the free volume is required, and demonstrate the utility of argon as a simple, noninteracting probe. As more ionic liquids find their way into industrial processes of scale, these findings are important for their utilisation in the capture of any gaseous solute, gas separation, or in processes involving the transformation of gases or small molecules.

19.
Nature ; 608(7924): 672-673, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002481
20.
Environ Sci Technol ; 56(9): 5898-5909, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35435682

RESUMO

In recent years, the fight against climate change and the mitigation of the impact of fluorinated gases (F-gases) on the atmosphere is a global concern. Development of technologies that help to efficiently separate and recycle hydrofluorocarbons (HFCs) at the end of the refrigeration and air conditioning equipment life is a priority. The technological development is important to stimulate the F-gas capture, specifically difluoromethane (R-32) and 1,1,1,2-tetrafluoroethane (R-134a), due to their high global warming potential. In this work, the COSMO-RS method is used to analyze the solute-solvent interactions and to determine Henry's constants of R-32 and R-134a in more than 600 ionic liquids. The three most performant ionic liquids were selected on the basis of COSMO-RS calculations, and F-gas absorption equilibrium isotherms were measured using gravimetric and volumetric methods. Experimental results are in good agreement with COSMO-RS predictions, with the ionic liquid tributyl(ethyl)phosphonium diethyl phosphate, [P2444][C2C2PO4], being the salt presenting the highest absorption capacities in molar and mass units compared to salts previously tested. The other two ionic liquids selected, trihexyltetradecylphosphonium glycinate, [P66614][C2NO2], and trihexyl(tetradecyl)phosphonium 2-cyano-pyrrole, [P66614][CNPyr], may be competitive as far as their absorption capacities are concerned. Future works will be guided on evaluating the performance of these ionic liquids at an industrial scale by means of process simulations, in order to elucidate the role in process efficiency of other relevant absorbent properties such as viscosity, molar weight, or specific heat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA