Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799587

RESUMO

This is the first study reporting on the design and development innovative inhaled formulations of the novel natural product antioxidant therapeutic, tetramethylpyrazine (TMP), also known as ligustrazine. TMP is obtained from Chinese herbs belonging to the class of Ligusticum. It is known to have antioxidant properties. It can act as a Nrf2/ARE activator and a Rho/ROCK inhibitor. The present study reports for the first time on the comprehensive characterization of raw TMP (non-spray dried) and spray dried TMP in a systematic manner using thermal analysis, electron microscopy, optical microscopy, and Raman spectroscopy. The in vitro aerosol dispersion performance of spray dried TMP was tested using three different FDA-approved unit-dose capsule-based human dry powder inhaler devices. In vitro human cellular studies were conducted on pulmonary cells from different regions of the human lung to examine the biocompatibility and non-cytotoxicity of TMP. Furthermore, the efficacy of inhaled TMP as both liquid and dry powder inhalation aerosols was tested in vivo using the monocrotaline (MCT)-induced PH rat model.

2.
Pulm Pharmacol Ther ; 64: 101975, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33137515

RESUMO

The purpose of this study was to design, develop and characterize inhalable proliposomal microparticles/nanoparticles of Amphotericin B (AmB) with synthetic phospholipids, dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) which are lung surfactant-mimic phospholipids. Organic solutions of AmB and phospholipids, were co-spray dried using an advanced closed-mode system and a high performance cyclone. Scanning electron microscopy (SEM) was employed to visualize the surface structure, morphology, and particles size. The residual water content of the proliposomes was quantified by Karl Fisher coulometric titration (KFT). Degree of crystallinity/non-crystallinity was measured by X-ray powder diffraction (XRPD). Phase behavior was measured by differential scanning calorimetry. The chemical composition by molecular fingerprinting was established using attenuated total reflectance (ATR)-Fourier-transform infrared (FTIR) spectroscopy. The amount of AmB loaded into the proliposomes was quantified using UV-VIS spectroscopy. The in vitro aerosol dispersion performance was conducted using the Next Generation Impactor (NGI) and the human dry powder inhaler (DPI) (Handihaler®) that is FDA-approved. Different human lung cell lines were employed to demonstrate in vitro safety as a function of dose and formulation. Smooth, spherical microparticles/nanoparticles were formed at medium and high spray drying pump rates and had low residual water content. A characteristic peak in the XRPD diffraction pattern as well as an endotherm in DSC confirmed the presence of the lipid bilayer structure characteristic in the DPPC/DPPG proliposomal systems. Superior in vitro aerosol performance was achieved with engineered microparticles/nanoparticles demonstrating suitability for targeted pulmonary drug delivery as inhalable dry powders. The in vitro cellular studies demonstrated that the formulated proliposomes are safe. These AmB proliposomes can be a better option for targeted treatment of severe pulmonary fungal infections.


Assuntos
Inaladores de Pó Seco , Nanopartículas , Administração por Inalação , Aerossóis , Anfotericina B , Humanos , Pulmão , Tamanho da Partícula , Fosfolipídeos , Pós , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA