Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 172, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347116

RESUMO

The capacity to leverage high resolution mass spectrometry (HRMS) with transient isotope labeling experiments is an untapped opportunity to derive insights on context-specific metabolism, that is difficult to assess quantitatively. Tools are needed to comprehensively mine isotopologue information in an automated, high-throughput way without errors. We describe a tool, Stable Isotope-assisted Metabolomics for Pathway Elucidation (SIMPEL), to simplify analysis and interpretation of isotope-enriched HRMS datasets. The efficacy of SIMPEL is demonstrated through examples of central carbon and lipid metabolism. In the first description, a dual-isotope labeling experiment is paired with SIMPEL and isotopically nonstationary metabolic flux analysis (INST-MFA) to resolve fluxes in central metabolism that would be otherwise challenging to quantify. In the second example, SIMPEL was paired with HRMS-based lipidomics data to describe lipid metabolism based on a single labeling experiment. Available as an R package, SIMPEL extends metabolomics analyses to include isotopologue signatures necessary to quantify metabolic flux.


Assuntos
Carbono , Metabolômica , Isótopos de Carbono/química , Espectrometria de Massas/métodos , Metabolômica/métodos
2.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889279

RESUMO

SUMMARY: The analysis of stable isotope labeling experiments requires accurate, efficient, and reproducible quantification of mass isotopomer distributions (MIDs), which is not a core feature of general-purpose metabolomics software tools that are optimized to quantify metabolite abundance. Here, we present PIRAMID (Program for Integration and Rapid Analysis of Mass Isotopomer Distributions), a MATLAB-based tool that addresses this need by offering a user-friendly, graphical user interface-driven program to automate the extraction of isotopic information from mass spectrometry (MS) datasets. This tool can simultaneously extract ion chromatograms for various metabolites from multiple data files in common vendor-agnostic file formats, locate chromatographic peaks based on a targeted list of characteristic ions and retention times, and integrate MIDs for each target ion. These MIDs can be corrected for natural isotopic background based on the user-defined molecular formula of each ion. PIRAMID offers support for datasets acquired from low- or high-resolution MS, and single (MS) or tandem (MS/MS) instruments. It also enables the analysis of single or dual labeling experiments using a variety of isotopes (i.e. 2H, 13C, 15N, 18O, 34S). DATA AVAILABILITY AND IMPLEMENTATION: MATLAB p-code files are freely available for non-commercial use and can be downloaded from https://mfa.vueinnovations.com/. Commercial licenses are also available. All the data presented in this publication are available under the "Help_menu" folder of the PIRAMID software.


Assuntos
Software , Espectrometria de Massas em Tandem , Isótopos de Oxigênio , Metabolômica/métodos
3.
Anal Chem ; 93(4): 1912-1923, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33467846

RESUMO

A growing number of software tools have been developed for metabolomics data processing and analysis. Many new tools are contributed by metabolomics practitioners who have limited prior experience with software development, and the tools are subsequently implemented by users with expertise that ranges from basic point-and-click data analysis to advanced coding. This Perspective is intended to introduce metabolomics software users and developers to important considerations that determine the overall impact of a publicly available tool within the scientific community. The recommendations reflect the collective experience of an NIH-sponsored Metabolomics Consortium working group that was formed with the goal of researching guidelines and best practices for metabolomics tool development. The recommendations are aimed at metabolomics researchers with little formal background in programming and are organized into three stages: (i) preparation, (ii) tool development, and (iii) distribution and maintenance.


Assuntos
Computação em Nuvem , Metabolômica/métodos , Software
4.
J Vis Exp ; (147)2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31107464

RESUMO

Organoids derived from the digested tissue are multicellular three-dimensional (3D) constructs that better recapitulate in vivo conditions than cell monolayers. Although they cannot completely model in vivo complexity, they retain some functionality of the original organ. In cancer models, organoids are commonly used to study tumor cell invasion. This protocol aims to develop and characterize organoids from the normal and irradiated mouse mammary gland tissue to evaluate the radiation response in normal tissues. These organoids can be applied to future in vitro cancer studies to evaluate tumor cell interactions with irradiated organoids. Mammary glands were resected, irradiated to 20 Gy and digested in a collagenase VIII solution. Epithelial organoids were separated via centrifugal differentiation, and 3D organoids were developed in 96-well low-adhesion microplates. Organoids expressed the characteristic epithelial marker cytokeratin 14. Macrophage interaction with the organoids was observed in co-culture experiments. This model may be useful for studying tumor-stromal interactions, infiltration of immune cells, and macrophage polarization within an irradiated microenvironment.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Organoides/crescimento & desenvolvimento , Animais , Técnicas de Cocultura , Feminino , Glândulas Mamárias Animais/efeitos da radiação , Camundongos , Camundongos Nus , Organoides/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA