Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14184, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648736

RESUMO

Colloidal silica grouting is a ground improvement technique capable of stabilizing weak problematic soils and achieving large reductions in soil hydraulic conductivities for applications including earthquake-induced liquefaction mitigation and groundwater flow control. In the conventional approach, chemical accelerants are added to colloidal silica suspensions that are introduced into soils targeted for improvement and the formation of a semi-solid silica gel occurs over time at a rate controlled by suspension chemistry and in situ geochemical conditions. Although the process has been extensively investigated, controlling the rate of gel formation in the presence of varying subsurface conditions and the limited ability of conventional methods to effectively monitor the gel formation process has posed practical challenges. In this study, a biomediated soil improvement process is proposed which utilizes enriched fermentative microorganisms to control the gelation of colloidal silica grouts through solution pH reductions and ionic strength increases. Four series of batch experiments were performed to investigate the ability of glucose fermenting microorganisms to be enriched in natural sands to induce geochemical changes capable of mediating silica gel formation and assess the effect of treatment solution composition on pH reduction behaviors. Complementary batch and soil column experiments were subsequently performed to upscale the process and explore the effectiveness of chemical, hydraulic, and geophysical methods to monitor microbial activity, gel formation, and engineering improvements. Results demonstrate that fermentative microorganisms can be successfully enriched and mediate gel formation in suspensions that would otherwise remain highly stable, thereby forgoing the need for chemical accelerants, increasing the reliability and control of colloidal silica grouting, enabling new monitoring approaches, and affording engineering enhancements comparable to conventional colloidal silica grouts.


Assuntos
Solo , Fermentação , Reprodutibilidade dos Testes , Sílica Gel , Suspensões
2.
Sci Rep ; 12(1): 17100, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224231

RESUMO

Microbially-induced calcium carbonate precipitation (MICP) is a bio-cementation process that can improve the engineering properties of granular soils through the precipitation of calcium carbonate (CaCO3) minerals on soil particle surfaces and contacts. The technology has advanced rapidly as an environmentally conscious soil improvement method, however, our understanding of the effect of changes in field-representative environmental conditions on the physical and chemical properties of resulting precipitates has remained limited. An improved understanding of the effect of subsurface geochemical and soil conditions on process reaction kinetics and the morphology and mineralogy of bio-cementation may be critical towards enabling successful field-scale deployment of the technology and improving our understanding of the long-term chemical permanence of bio-cemented soils in different environments. In this study, thirty-five batch experiments were performed to specifically investigate the influence of seawater ions and varying soil materials on the mineralogy, morphology, and reaction kinetics of ureolytic bio-cementation. During experiments, differences in reaction kinetics were quantified to identify conditions inhibiting CaCO3 precipitation and ureolysis. Following experiments, scanning electron microscopy, x-ray diffraction, and chemical composition analyses were employed to quantify differences in mineralogical compositions and material morphology. Ions present in seawater and variations in soil materials were shown to significantly influence ureolytic activity and precipitate mineralogy and morphology, however, calcite remained the predominant CaCO3 polymorph in all experiments with relative percentages exceeding 80% by mass in all precipitates.


Assuntos
Cimentação , Solo , Carbonato de Cálcio/química , Precipitação Química , Íons , Cinética , Água do Mar/química , Solo/química
3.
Environ Sci Technol ; 55(15): 10784-10793, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279077

RESUMO

Microbially induced calcite precipitation is a biomineralization process with numerous civil engineering and ground improvement applications. In replicate soil columns, the efficacy and microbial composition of soil bioaugmented with the ureolytic bacterium Sporosarcina pasteurii were compared to a biostimulation method that enriches native ureolytic soil bacteria in situ under conditions analogous to field implementation. The selective enrichment resulting from sequential stimulation treatments strongly selected for Firmicutes (>97%), with Sporosarcina and Lysinibacillus comprising 60 to 94% of high-throughput 16S rDNA sequences in each suspended community sample. Seven species of the former and two of the latter were present in greater than 10% abundance at different times, demonstrating unexpected within-genus diversity and robustness in the suspended phase of this highly selective environment. Based on longer 16S sequences, it was inferred that augmented S. pasteurii competed poorly with natural bacteria, decreasing to below detection after nine treatments, while the native microbial community was enriched to approximately that present in the stimulated columns. These analyses were corroborated by the observed convergence in bulk ureolytic rates and calcite contents between techniques. However, a 10-fold discrepancy between the observed cell density and an activity-based estimate indicates the attached community, uncharacterized despite efforts, substantially contributes to bulk behavior.


Assuntos
Sporosarcina , Bactérias/genética , Carbonato de Cálcio , Solo
4.
Sci Rep ; 9(1): 18313, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797962

RESUMO

Microbially Induced Calcite Precipitation (MICP), or bio-cementation, is a promising bio-mediated technology that can improve the engineering properties of soils through the precipitation of calcium carbonate. Despite significant advances in the technology, concerns regarding the fate of produced NH4+ by-products have remained largely unaddressed. In this study, five 3.7-meter long soil columns each containing one of three different soils were improved using ureolytic bio-cementation, and post-treatment NH4+ by-product removal was investigated during the application of 525 L of a high pH and high ionic strength rinse solution. During rinsing, reductions in aqueous NH4+ were observed in all columns from initial concentrations between ≈100 mM to 500 mM to final values between ≈0.3 mM and 20 mM with higher NH4+ concentrations observed at distances furthest from the injection well. In addition, soil Vs measurements completed during rinse injections suggested that no significant changes in cementation integrity occurred during NH4+ removal. After rinsing and a 12 hour stop flow period, all column solutions achieved cumulative NH4+ removals exceeding 97.9%. Soil samples collected following rinsing, however, contained significant sorbed NH4+ masses that appeared to have a near linear relationship with surrounding aqueous NH4+ concentrations. While these results suggest that NH4+ can be successfully removed from bio-cemented soils, acceptable limits for NH4+ aqueous concentrations and sorbed NH4+ masses will likely be governed by site-specific requirements and may require further investigation and refinement of the developed techniques.

5.
Sci Rep ; 9(1): 11517, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395919

RESUMO

Microbially Induced Calcite Precipitation (MICP) is a bio-mediated cementation process that can improve the engineering properties of granular soils through the precipitation of calcite. The process is made possible by soil microorganisms containing urease enzymes, which hydrolyze urea and enable carbonate ions to become available for precipitation. While most researchers have injected non-native ureolytic bacteria to complete bio-cementation, enrichment of native ureolytic microorganisms may enable reductions in process treatment costs and environmental impacts. In this study, a large-scale bio-cementation experiment involving two 1.7-meter diameter tanks and a complementary soil column experiment were performed to investigate biogeochemical differences between bio-cementation mediated by either native or augmented (Sporosarcina pasteurii) ureolytic microorganisms. Although post-treatment distributions of calcite and engineering properties were similar between approaches, the results of this study suggest that significant differences in ureolysis rates and related precipitation rates between native and augmented microbial communities may influence the temporal progression and spatial distribution of bio-cementation, solution biogeochemical changes, and precipitate microstructure. The role of urea hydrolysis in enabling calcite precipitation through sustained super-saturation following treatment injections is explored.


Assuntos
Bactérias/metabolismo , Carbonato de Cálcio/metabolismo , Urease/metabolismo , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Precipitação Química , Contagem de Colônia Microbiana , Hidrólise , Microscopia Eletrônica de Varredura
6.
Environ Sci Technol ; 52(7): 3997-4005, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505251

RESUMO

Microbially Induced Calcite Precipitation (MICP) is a biomediated soil cementation process that offers an environmentally conscious alternative to conventional geotechnical soil improvement technologies. This study provides the first comparison of ureolytic bacteria isolated from sand cemented in parallel, meter-scale, MICP experiments using either biostimulation or bioaugmentation approaches, wherein colonies resembling the augmented strain ( Sporosarcina pasteurii ATCC 11859) were interrogated. Over the 13 day experiment, 47 of the 57 isolates collected were strains of Sporosarcina and the diversity of these strains was high, with 20 distinct strains belonging to 5 species identified. Although the S. pasteurii inoculant used for augmentation was recovered immediately after introduction in the augmented specimen, the strain was not recovered after 8 days in either augmented or stimulated soils, suggesting that it competes poorly with indigenous bacteria. Past studies on the physiological properties of S. pasteurii ATCC 11859 suggest that close relatives may have selective advantages under the biogeochemical conditions employed during MICP; however, the extent to which these properties apply to isolates of the current study is unknown. Whole cell urease kinetic properties were investigated for representative isolates and suggest up to 100-fold higher rates of carbonate production when compared to other biomediated processes proposed for MICP.


Assuntos
Sporosarcina , Bactérias , Carbonato de Cálcio , Ureia , Urease
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA