Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628213

RESUMO

Adverse ventricular remodeling is the heart's response to damaging stimuli and is linked to heart failure and poor prognosis. Formyl-indolo [3,2-b] carbazole (FICZ) is an endogenous ligand for the aryl hydrocarbon receptor (AhR), through which it exerts pleiotropic effects including protection against inflammation, fibrosis, and oxidative stress. We evaluated the effect of AhR activation by FICZ on the adverse ventricular remodeling that occurs in the early phase of pressure overload in the murine heart induced by transverse aortic constriction (TAC). Cardiac structure and function were evaluated by cardiac magnetic resonance imaging (CMRI) before and 3 days after Sham or TAC surgery in mice treated with FICZ or with vehicle, and cardiac tissue was used for biochemical studies. CMRI analysis revealed that FICZ improved cardiac function and attenuated cardiac hypertrophy. These beneficial effects involved the inhibition of the hypertrophic calcineurin/NFAT pathway, transcriptional reduction in pro-fibrotic genes, and antioxidant effects mediated by the NRF2/NQO1 pathway. Overall, our findings provide new insight into the role of cardiac AhR signaling in the injured heart.


Assuntos
Carbazóis , Insuficiência Cardíaca , Receptores de Hidrocarboneto Arílico , Remodelação Ventricular , Animais , Carbazóis/farmacologia , Cardiomegalia/metabolismo , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo
2.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990403

RESUMO

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmia syndrome caused by gene mutations that render RYR2 Ca release channels hyperactive, provoking spontaneous Ca release and delayed afterdepolarizations (DADs). What remains unknown is the cellular source of ventricular arrhythmia triggered by DADs: Purkinje cells in the conduction system or ventricular cardiomyocytes in the working myocardium. To answer this question, we used a genetic approach in mice to knock out cardiac calsequestrin either in Purkinje cells or in ventricular cardiomyocytes. Total loss of calsequestrin in the heart causes a severe CPVT phenotype in mice and humans. We found that loss of calsequestrin only in ventricular myocytes produced a full-blown CPVT phenotype, whereas mice with loss of calsequestrin only in Purkinje cells were comparable to WT mice. Subendocardial chemical ablation or restoration of calsequestrin expression in subendocardial cardiomyocytes neighboring Purkinje cells was sufficient to protect against catecholamine-induced arrhythmias. In silico modeling demonstrated that DADs in ventricular myocardium can trigger full action potentials in the Purkinje fiber, but not vice versa. Hence, ectopic beats in CPVT are likely generated at the Purkinje-myocardial junction via a heretofore unrecognized tissue mechanism, whereby DADs in the ventricular myocardium trigger full action potentials in adjacent Purkinje cells.


Assuntos
Calsequestrina/genética , Regulação da Expressão Gênica , Frequência Cardíaca/fisiologia , Células de Purkinje/patologia , RNA/genética , Taquicardia Ventricular/diagnóstico , Animais , Calsequestrina/biossíntese , Linhagem Celular , Modelos Animais de Doenças , Camundongos Knockout , Células de Purkinje/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/fisiopatologia
3.
J Mol Cell Cardiol ; 130: 96-106, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30928430

RESUMO

Calmodulin (CaM) is a Ca-binding protein that binds to, and can directly inhibit cardiac ryanodine receptor calcium release channels (RyR2). Animal studies have shown that RyR2 hyperphosphorylation reduces CaM binding to RyR2 in failing hearts, but data are lacking on how CaM regulates human RyR2 and how this regulation is affected by RyR2 phosphorylation. Physiological concentrations of CaM (100 nM) inhibited the diastolic activity of RyR2 isolated from failing human hearts by ~50% but had no effect on RyR2 from healthy human hearts. Using FRET between donor-FKBP12.6 and acceptor-CaM bound to RyR2, we determined that CaM binds to RyR2 from healthy human heart with a Kd = 121 ±â€¯14 nM. Ex-vivo phosphorylation/dephosphorylation experiments suggested that the divergent CaM regulation of healthy and failing human RyR2 was caused by differences in RyR2 phosphorylation by protein kinase A and Ca-CaM-dependent kinase II. Ca2+-spark measurements in murine cardiomyocytes harbouring RyR2 phosphomimetic or phosphoablated mutants at S2814 and S2808 suggest that phosphorylation of residues corresponding to either human RyR2-S2808 or S2814 is both necessary and sufficient for RyR2 regulation by CaM. Our results challenge the current concept that CaM universally functions as a canonical inhibitor of RyR2 across species. Rather, CaM's biological action on human RyR2 appears to be more nuanced, with inhibitory activity only on phosphorylated RyR2 channels, which occurs during exercise or in patients with heart failure.


Assuntos
Calmodulina/metabolismo , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Miócitos Cardíacos/patologia , Fosforilação , Ligação Proteica
4.
Proc Natl Acad Sci U S A ; 116(11): 4810-4815, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30792355

RESUMO

Ca2+ leak via ryanodine receptor type 2 (RyR2) can cause potentially fatal arrhythmias in a variety of heart diseases and has also been implicated in neurodegenerative and seizure disorders, making RyR2 an attractive therapeutic target for drug development. Here we synthesized and investigated the fungal natural product and known insect RyR antagonist (-)-verticilide and several congeners to determine their activity against mammalian RyR2. Although the cyclooligomeric depsipeptide natural product (-)-verticilide had no effect, its nonnatural enantiomer [ent-(+)-verticilide] significantly reduced RyR2-mediated spontaneous Ca2+ leak both in cardiomyocytes from wild-type mouse and from a gene-targeted mouse model of Ca2+ leak-induced arrhythmias (Casq2-/-). ent-(+)-verticilide selectively inhibited RyR2-mediated Ca2+ leak and exhibited higher potency and a distinct mechanism of action compared with the pan-RyR inhibitors dantrolene and tetracaine and the antiarrhythmic drug flecainide. ent-(+)-verticilide prevented arrhythmogenic membrane depolarizations in cardiomyocytes without significant effects on the cardiac action potential and attenuated ventricular arrhythmia in catecholamine-challenged Casq2-/- mice. These findings indicate that ent-(+)-verticilide is a potent and selective inhibitor of RyR2-mediated diastolic Ca2+ leak, making it a molecular tool to investigate the therapeutic potential of targeting RyR2 hyperactivity in heart and brain pathologies. The enantiomer-specific activity and straightforward chemical synthesis of (unnatural) ent-(+)-verticilide provides a compelling argument to prioritize ent-natural product synthesis. Despite their general absence in nature, the enantiomers of natural products may harbor unprecedented activity, thereby leading to new scaffolds for probe and therapeutic development.


Assuntos
Antiarrítmicos/química , Antiarrítmicos/farmacologia , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/fisiopatologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Depsipeptídeos/uso terapêutico , Dimerização , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Rianodina/metabolismo , Estereoisomerismo
5.
Nephrol Dial Transplant ; 34(11): 1864-1875, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629224

RESUMO

BACKGROUND: Cardiac dysfunction and arrhythmia are common and onerous cardiovascular events in end-stage renal disease (ESRD) patients, especially those on dialysis. Fibroblast growth factor (FGF)-23 is a phosphate-regulating hormone whose levels dramatically increase as renal function declines. Beyond its role in phosphorus homeostasis, FGF-23 may elicit a direct effect on the heart. Whether FGF-23 modulates ventricular cardiac rhythm is unknown, prompting us to study its role on excitation-contraction (EC) coupling. METHODS: We examined FGF-23 in vitro actions on EC coupling in adult rat native ventricular cardiomyocytes using patch clamp and confocal microscopy and in vivo actions on cardiac rhythm using electrocardiogram. RESULTS: Compared with vehicle treatment, FGF-23 induced a significant decrease in rat cardiomyocyte contraction, L-type Ca2+ current, systolic Ca2+ transients and sarcoplasmic reticulum (SR) load and SR Ca2+-adenosine triphosphatase 2a pump activity. FGF-23 induced pro-arrhythmogenic activity in vitro and in vivo as automatic cardiomyocyte extracontractions and premature ventricular contractions. Diastolic spontaneous Ca2+ leak (sparks and waves) was significantly increased by FGF-23 via the calmodulin kinase type II (CaMKII)-dependent pathway related to hyperphosphorylation of ryanodine receptors at the CaMKII site Ser2814. Both contraction dysfunction and spontaneous pro-arrhythmic Ca2+ events induced by FGF-23 were blocked by soluble Klotho (sKlotho). CONCLUSIONS: Our results show that FGF-23 reduces contractility and enhances arrhythmogenicity through intracellular Ca2+ mishandling. Blocking its actions on the heart by improving sKlotho bioavailability may enhance cardiac function and reduce arrhythmic events frequently observed in ESRD.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cálcio/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Ventrículos do Coração/fisiopatologia , Contração Muscular , Miócitos Cardíacos/fisiologia , Disfunção Ventricular/fisiopatologia , Animais , Arritmias Cardíacas/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Acoplamento Excitação-Contração , Glucuronidase/metabolismo , Proteínas Klotho , Masculino , Miócitos Cardíacos/citologia , Ratos , Ratos Wistar , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
6.
Front Physiol ; 9: 1186, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197603

RESUMO

Calcitriol, the bioactive metabolite of vitamin D, interacts with the ubiquitously expressed nuclear vitamin D receptor (VDR) to induce genomic effects, but it can also elicit rapid responses via membrane-associated VDR through mechanisms that are poorly understood. The down-regulation of K+ currents is the main origin of electrophysiological remodeling in pathological hypertrophy and heart failure (HF), which can contribute to action potential prolongation and subsequently increase the risk of triggered arrhythmias. Adult mouse ventricular myocytes were isolated and treated with 10 nM calcitriol or vehicle for 15-30 min. In some experiments, cardiomyocytes were pretreated with the Akt inhibitor triciribine. In the adult mouse ventricle, outward K+ currents involved in cardiac repolarization are comprised of three components: the fast transient outward current (Itof), the ultrarapid delayed rectifier K+ current (Ikur), and the non-inactivating steady-state outward current (Iss). K+ currents were investigated using the whole-cell or the perforated patch-clamp technique and normalized to cell capacitance to obtain current densities. Calcitriol treatment of cardiomyocytes induced an increase in the density of Itof and Ikur, which was lost in myocytes isolated from VDR-knockout mice. In addition, calcitriol activated Akt in cardiomyocytes and pretreatment with triciribine prevented the calcitriol-induced increase of outward K+ currents. In conclusion, we demonstrate that calcitriol via VDR and Akt increases both Itof and Ikur densities in mouse ventricular cardiomyocytes. Our findings may provide new mechanistics clues for the cardioprotective role of this hormone in the heart.

7.
Circ Res ; 121(12): 1323-1330, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28974554

RESUMO

RATIONALE: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are increasingly being used for modeling heart disease and are under development for regeneration of the injured heart. However, incomplete structural and functional maturation of hiPSC-CM, including lack of T-tubules, immature excitation-contraction coupling, and inefficient Ca-induced Ca release remain major limitations. OBJECTIVE: Thyroid and glucocorticoid hormones are critical for heart maturation. We hypothesized that their addition to standard protocols would promote T-tubule development and mature excitation-contraction coupling of hiPSC-CM when cultured on extracellular matrix with physiological stiffness (Matrigel mattress). METHODS AND RESULTS: hiPSC-CM were generated using a standard chemical differentiation method supplemented with T3 (triiodothyronine) and/or Dex (dexamethasone) during days 16 to 30 followed by single-cell culture for 5 days on Matrigel mattress. hiPSC-CM treated with T3+Dex, but not with either T3 or Dex alone, developed an extensive T-tubule network. Notably, Matrigel mattress was necessary for T-tubule formation. Compared with adult human ventricular cardiomyocytes, T-tubules in T3+Dex-treated hiPSC-CM were less organized and had more longitudinal elements. Confocal line scans demonstrated spatially and temporally uniform Ca release that is characteristic of excitation-contraction coupling in the heart ventricle. T3+Dex enhanced elementary Ca release measured by Ca sparks and promoted RyR2 (ryanodine receptor) structural organization. Simultaneous measurements of L-type Ca current and intracellular Ca release confirmed enhanced functional coupling between L-type Ca channels and RyR2 in T3+Dex-treated cells. CONCLUSIONS: Our results suggest a permissive role of combined thyroid and glucocorticoid hormones during the cardiac differentiation process, which when coupled with further maturation on Matrigel mattress, is sufficient for T-tubule development, enhanced Ca-induced Ca release, and more ventricular-like excitation-contraction coupling. This new hormone maturation method could advance the use of hiPSC-CM for disease modeling and cell-based therapy.


Assuntos
Diferenciação Celular , Glucocorticoides/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Hormônios Tireóideos/farmacologia , Sinalização do Cálcio , Células Cultivadas , Acoplamento Excitação-Contração , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
10.
J Physiol ; 595(13): 4227-4243, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28374413

RESUMO

KEY POINTS: Leptin, is a 16 kDa pleiotropic peptide not only primarily secreted by adipocytes, but also produced by other tissues, including the heart. Controversy exists regarding the adverse and beneficial effects of leptin on the heart We analysed the effect of a non-hypertensive dose of leptin on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction. We find that leptin activates mechanisms that contribute to cardiac dysfunction under physiological conditions. However, after the establishment of pressure overload, an increase in leptin levels has protective cardiac effects with respect to rescuing the cellular heart failure phenotype. These beneficial effects of leptin involve restoration of action potential duration via normalization of transient outward potassium current and sarcoplasmic reticulum Ca2+ content via rescue of control sarcoplasmic/endoplasmic reticulum Ca2+ ATPase levels and ryanodine receptor function modulation, leading to normalization of Ca2+ handling parameters. ABSTRACT: Leptin, is a 16 kDa pleiotropic peptide not only primary secreted by adipocytes, but also produced by other tissues, including the heart. Evidence indicates that leptin may have either adverse or beneficial effects on the heart. To obtain further insights, in the present study, we analysed the effect of leptin treatment on cardiac function, [Ca2+ ]i handling and cellular electrophysiology, which participate in the genesis of pump failure and related arrhythmias, both in control mice and in mice subjected to chronic pressure-overload by transverse aorta constriction (TAC). Three weeks after surgery, animals received either leptin (0.36 mg kg-1  day-1 ) or vehicle via osmotic minipumps for 3 weeks. Echocardiographic measurements showed that, although leptin treatment was deleterious on cardiac function in sham, leptin had a cardioprotective effect following TAC. [Ca2+ ]i transient in cardiomyocytes followed similar pattern. Patch clamp experiments showed prolongation of action potential duration (APD) in TAC and leptin-treated sham animals, whereas, following TAC, leptin reduced the APD towards control values. APD variations were associated with decreased transient outward potassium current and Kv4.2 and KChIP2 protein expression. TAC myocytes showed a higher incidence of triggered activities and spontaneous Ca2+ waves. These proarrhythmic manifestations, related to Ca2+ /calmodulin-dependent protein kinase II and ryanodine receptor phosphorylation, were reduced by leptin. The results of the present study demonstrate that, although leptin treatment was deleterious on cardiac function in control animals, leptin had a cardioprotective effect following TAC, normalizing cardiac function and reducing arrhythmogeneity at the cellular level.


Assuntos
Estenose da Valva Aórtica/tratamento farmacológico , Cardiotônicos/farmacologia , Leptina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação , Animais , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotônicos/uso terapêutico , Células Cultivadas , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Leptina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo
11.
J Am Coll Cardiol ; 69(4): 423-433, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28126160

RESUMO

BACKGROUND: Heart failure (HF) is a complex syndrome associated with a maladaptive innate immune system response that leads to deleterious cardiac remodeling. However, the underlying mechanisms of this syndrome are poorly understood. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a newly recognized innate immune sensor involved in cardiovascular diseases. OBJECTIVES: This study evaluated the role of NOD1 in HF progression. METHODS: NOD1 was examined in human failing myocardium and in a post-myocardial infarction (PMI) HF model evaluated in wild-type (wt-PMI) and Nod1-/- mice (Nod1-/--PMI). RESULTS: The NOD1 pathway was up-regulated in human and murine failing myocardia. Compared with wt-PMI, hearts from Nod1-/--PMI mice had better cardiac function and attenuated structural remodeling. Ameliorated cardiac function in Nod1-/--PMI mice was associated with prevention of Ca2+ dynamic impairment linked to HF, including smaller and longer intracellular Ca2+ concentration transients and a lesser sarcoplasmic reticulum Ca2+ load due to a down-regulation of the sarcoplasmic reticulum Ca2+-adenosine triphosphatase pump and by augmented levels of the Na+/Ca2+ exchanger. Increased diastolic Ca2+ release in wt-PMI cardiomyocytes was related to hyperphosphorylation of ryanodine receptors, which was blunted in Nod1-/--PMI cardiomyocytes. Pharmacological blockade of NOD1 also prevented Ca2+ mishandling in wt-PMI mice. Nod1-/--PMI mice showed significantly fewer ventricular arrhythmias and lower mortality after isoproterenol administration. These effects were associated with lower aberrant systolic Ca2+ release and with a prevention of the hyperphosphorylation of ryanodine receptors under isoproterenol administration in Nod1-/--PMI mice. CONCLUSIONS: NOD1 modulated intracellular Ca2+ mishandling in HF, emerging as a new target for HF therapy.


Assuntos
Cálcio/metabolismo , Insuficiência Cardíaca/metabolismo , Proteína Adaptadora de Sinalização NOD1/fisiologia , Animais , Arritmias Cardíacas/metabolismo , Cálcio/fisiologia , Progressão da Doença , Humanos , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Regulação para Cima
12.
Artigo em Inglês | MEDLINE | ID: mdl-27516456

RESUMO

BACKGROUND: Calmodulin (CaM) mutations are associated with severe forms of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). CaM mutations are found in 13% of genotype-negative long QT syndrome patients, but the prevalence of CaM mutations in genotype-negative CPVT patients is unknown. Here, we identify and characterize CaM mutations in 12 patients with genotype-negative but clinically diagnosed CPVT. METHODS AND RESULTS: We performed mutational analysis of CALM1, CALM2, and CALM3 gene-coding regions, in vitro measurement of CaM-Ca(2+) (Ca)-binding affinity, ryanodine receptor 2-CaM binding, Ca handling, L-type Ca current, and action potential duration. We identified a novel CaM mutation-A103V-in CALM3 in 1 of 12 patients (8%), a female who experienced episodes of exertion-induced syncope since age 10, had normal QT interval, and displayed ventricular ectopy during stress testing consistent with CPVT. A103V modestly lowered CaM Ca-binding affinity (3-fold reduction versus WT-CaM), but did not alter CaM binding to ryanodine receptor 2. In permeabilized cardiomyocytes, A103V-CaM (100 nmol/L) promoted spontaneous Ca wave and spark activity, a cellular phenotype of ryanodine receptor 2 activation. Even a 1:3 mixture of A103V-CaM:WT-CaM activated Ca waves, demonstrating functional dominance. Compared with long QT syndrome D96V-CaM, A103V-CaM had significantly less effects on L-type Ca current inactivation, did not alter action potential duration, and caused delayed afterdepolarizations and triggered beats in intact cardiomyocytes. CONCLUSIONS: We discovered a novel CPVT mutation in the CALM3 gene that shares functional characteristics with established CPVT-associated mutations in CALM1. A small proportion of A103V-CaM is sufficient to evoke arrhythmogenic Ca disturbances via ryanodine receptor 2 dysregulation, which explains the autosomal dominant inheritance.


Assuntos
Calmodulina/genética , Síndrome do QT Longo/genética , Taquicardia Ventricular/genética , Potenciais de Ação , Adulto , Animais , Análise Mutacional de DNA , Eletrocardiografia , Teste de Esforço , Feminino , Genótipo , Humanos , Masculino , Camundongos , Fenótipo , Rianodina/farmacologia
13.
Circ Cardiovasc Genet ; 9(2): 136-146, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26969752

RESUMO

BACKGROUND: Calmodulin (CaM) is encoded by 3 genes, CALM1, CALM2, and CALM3, all of which harbor pathogenic variants linked to long QT syndrome (LQTS) with early and severe expressivity. These LQTS-causative variants reduce CaM affinity to Ca(2+) and alter the properties of the cardiac L-type calcium channel (CaV1.2). CaM also modulates NaV1.5 and the ryanodine receptor, RyR2. All these interactions may play a role in disease pathogenesis. Here, we determine the spectrum and prevalence of pathogenic CaM variants in a cohort of genetically elusive LQTS, and functionally characterize the novel variants. METHODS AND RESULTS: Thirty-eight genetically elusive LQTS cases underwent whole-exome sequencing to identify CaM variants. Nonsynonymous CaM variants were over-represented significantly in this heretofore LQTS cohort (13.2%) compared with exome aggregation consortium (0.04%; P<0.0001). When the clinical sequelae of these 5 CaM-positive cases were compared with the 33 CaM-negative cases, CaM-positive cases had a more severe phenotype with an average age of onset of 10 months, an average corrected QT interval of 676 ms, and a high prevalence of cardiac arrest. Functional characterization of 1 novel variant, E141G-CaM, revealed an 11-fold reduction in Ca(2+)-binding affinity and a functionally dominant loss of inactivation in CaV1.2, mild accentuation in NaV1.5 late current, but no effect on intracellular RyR2-mediated calcium release. CONCLUSIONS: Overall, 13% of our genetically elusive LQTS cohort harbored nonsynonymous variants in CaM. Genetic testing of CALM1-3 should be pursued for individuals with LQTS, especially those with early childhood cardiac arrest, extreme QT prolongation, and a negative family history.


Assuntos
Calmodulina/genética , Síndrome do QT Longo/genética , Mutação de Sentido Incorreto/genética , Sequência de Aminoácidos , Animais , Calmodulina/química , Demografia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Prevalência , Adulto Jovem
14.
Mol Pharmacol ; 88(1): 57-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25920678

RESUMO

Dantrolene is the first line therapy of malignant hyperthermia. Animal studies suggest that dantrolene also protects against heart failure and arrhythmias caused by spontaneous Ca(2+) release. Although dantrolene inhibits Ca(2+) release from the sarcoplasmic reticulum of skeletal and cardiac muscle preparations, its mechanism of action has remained controversial, because dantrolene does not inhibit single ryanodine receptor (RyR) Ca(2+) release channels in lipid bilayers. Here we test the hypothesis that calmodulin (CaM), a physiologic RyR binding partner that is lost during incorporation into lipid bilayers, is required for dantrolene inhibition of RyR channels. In single channel recordings (100 nM cytoplasmic [Ca(2+)] + 2 mM ATP), dantrolene caused inhibition of RyR1 (rabbit skeletal muscle) and RyR2 (sheep) with a maximal inhibition of Po (Emax) to 52 ± 4% of control only after adding physiologic [CaM] = 100 nM. Dantrolene inhibited RyR2 with an IC50 of 0.16 ± 0.03 µM. Mutant N98S-CaM facilitated dantrolene inhibition with an IC50 = 5.9 ± 0.3 nM. In mouse cardiomyocytes, dantrolene had no effect on cardiac Ca(2+) release in the absence of CaM, but reduced Ca(2+) wave frequency (IC50 = 0.42 ± 0.18 µM, Emax = 47 ± 4%) and amplitude (IC50 = 0.19 ± 0.04 µM, Emax = 66 ± 4%) in the presence of 100 nM CaM. We conclude that CaM is essential for dantrolene inhibition of RyR1 and RyR2. Its absence explains why dantrolene inhibition of single RyR channels has not been previously observed.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Dantroleno/administração & dosagem , Fármacos Neuromusculares/administração & dosagem , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Hipertermia Maligna/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Coelhos , Ovinos
15.
Cardiovasc Res ; 106(3): 375-86, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25824149

RESUMO

AIMS: Inflammation is a significant contributor to cardiovascular disease and its complications; however, whether the myocardial inflammatory response is harmonized after cardiac injury remains to be determined. Some receptors of the innate immune system, including the nucleotide-binding oligomerization domain-like receptors (NLRs), play key roles in the host response after cardiac damage. Nucleotide-binding oligomerization domain containing 1 (NOD1), a member of the NLR family, is expressed in the heart, but its functional role has not been elucidated. We determine whether selective NOD1 activation modulates cardiac function and Ca(2+) signalling. METHODS AND RESULTS: Mice were treated for 3 days with the selective NOD1 agonist C12-iE-DAP (iE-DAP), and cardiac function and Ca(2+) cycling were assessed. We found that iE-DAP treatment resulted in cardiac dysfunction, measured as a decrease in ejection fraction and fractional shortening. Cardiomyocytes isolated from iE-DAP-treated mice displayed a decrease in the L-type Ca(2+) current, [Ca(2+)]i transients and Ca(2+) load, and decreased expression of phospho-phospholamban, sarcoplasmic reticulum-ATPase, and Na(+)-Ca(2+) exchanger. Furthermore, iE-DAP prompted 'diastolic Ca(2+) leak' in cardiomyocytes, resulting from increased Ca(2+) spark frequency and RyR2 over-phosphorylation. Importantly, these iE-DAP-induced changes in Ca(2+) cycling were lost in NOD1(-/-) mice, indicating that iE-DAP exerts its actions through NOD1. Co-treatment of mice with iE-DAP and a selective inhibitor of NF-κB (BAY11-7082) prevented cardiac dysfunction and Ca(2+) handling impairment induced by iE-DAP. CONCLUSION: Our data provide the first evidence that NOD1 activation induces cardiac dysfunction associated with excitation-contraction coupling impairment through NF-κB activation and uncover a new pro-inflammatory player in the regulation of cardiovascular function.


Assuntos
Cálcio/metabolismo , Acoplamento Excitação-Contração , Mediadores da Inflamação/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Animais , Anti-Inflamatórios/farmacologia , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Acoplamento Excitação-Contração/efeitos dos fármacos , Mediadores da Inflamação/agonistas , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD1/antagonistas & inibidores , Proteína Adaptadora de Sinalização NOD1/deficiência , Proteína Adaptadora de Sinalização NOD1/genética , Fosforilação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Volume Sistólico , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos
16.
J Mol Cell Cardiol ; 82: 75-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25758429

RESUMO

AIMS: In cardiac muscle, Ca(2+) release from sarcoplasmic reticulum (SR) is reduced with successively shorter coupling intervals of premature stimuli, a phenomenon known as SR Ca(2+) release refractoriness. We recently reported that the SR luminal Ca(2+) binding protein calsequestrin 2 (Casq2) contributes to release refractoriness in intact mouse hearts, but the underlying mechanisms remain unclear. Here, we further investigate the mechanisms responsible for physiological release refractoriness. METHODS AND RESULTS: Gene-targeted ablation of Casq2 (Casq2 KO) abolished SR Ca(2+) release refractoriness in isolated mouse ventricular myocytes. Surprisingly, impaired Ca(2+)-dependent inactivation of L-type Ca(2+) current (ICa), which is responsible for triggering SR Ca(2+) release, significantly contributed to loss of Ca(2+) release refractoriness in Casq2 KO myocytes. Recovery from Ca(2+)-dependent inactivation of ICa was significantly accelerated in Casq2 KO compared to wild-type (WT) myocytes. In contrast, voltage-dependent inactivation measured by using Ba(2+) as charge carrier was not significantly different between WT and Casq2 KO myocytes. Ca(2+)-dependent inactivation of ICa was normalized by intracellular dialysis of excess apo-CaM (20 µM), which also partially restored physiological Ca(2+) release refractoriness in Casq2 KO myocytes. CONCLUSIONS: Our findings reveal that the intra-SR protein Casq2 is largely responsible for the phenomenon of SR Ca(2+) release refractoriness in murine ventricular myocytes. We also report a novel mechanism of impaired Ca(2+)-CaM-dependent inactivation of Cav1.2, which contributes to the loss of SR Ca(2+) release refractoriness in the Casq2 KO mouse model and, therefore, may further increase risk for ventricular arrhythmia in vivo.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Calsequestrina/genética , Calsequestrina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Citosol/metabolismo , Feminino , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo
17.
J Clin Invest ; 124(11): 4684-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25329688

RESUMO

Atrial fibrillation (AF) is the most common sustained arrhythmia disease. Current drug- and surgical-based therapies are ineffective in about 40% to 50% of AF patients; therefore, there is a great need to better understand the underlying mechanisms of this disease and identify potential therapeutic targets. In this issue of the JCI, Greiser and coworkers discovered that atrial remodeling in response to sustained tachycardia silences Ca2+ signaling in isolated rabbit and human atrial myocytes. This Ca2+ release silencing was attributable to a failure of subcellular propagated Ca2+ release due to an increased cytosolic buffering strength. The results from this study challenge the current paradigm that Ca2+ release instability underlies AF. Instead, Ca2+ silencing could be protective against the massive cellular Ca2+ loading that occurs during chronic AF.


Assuntos
Sinalização do Cálcio , Átrios do Coração/patologia , Miócitos Cardíacos/metabolismo , Taquicardia/metabolismo , Animais , Humanos
18.
Pflugers Arch ; 466(5): 903-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24046152

RESUMO

Circulating leptin levels are elevated in obesity and hyperleptinaemia has been postulated to be an independent risk factor for the development of cardiovascular diseases. Although many studies have been published on the mechanisms involved in the effects of leptin on cardiac function and pathological remodeling, scarce information is currently available analyzing the influence of prolonged leptin treatment on ionic cardiac channels remodeling in adult ventricular myocytes. Enzymatically isolated adult rat ventricular myocytes were treated with leptin or vehicle for 48h. Real-Time RT-PCR were used to analyze mRNA expression of Kir2.1, Cav1.2, Cav 3.1, Kv4.2 and Kv4.3 α-subunits and KChIP2 auxiliary subunit. The fast transient outward potassium channels (Itof) α-subunits Kv4.2, Kv4.3 and KChIP2 were analyzed by Western-blot. The fast transient outward potassium current and the action potentials were recorded in isolated myocytes by the whole-cell patch-clamp technique. Leptin treatment induced an up-regulation of Kv4.2, Kv4.3 and KChIP2 subunits mRNA expression. However, transcriptional levels of Kir2.1, Cav1.2, or Cav3.1 α-subunit channels were unmodified by leptin. Protein expression levels of Kv4.2, Kv4.3 and KChIP2 subunits were also increased by leptin. The electrophysiological study showed that leptin increases the fast transient outward potassium current amplitudes and densities shortening action potential duration. In addition, leptin activated Akt signaling in cardiomyocytes and this mechanism was involved in the effect of leptin on Itof channels. In conclusión, leptin increases both the expression and function of Itof channels in adult ventricular myocytes and this mechanism involves Akt signaling. Altogether these data suggest that leptin could exert beneficial or detrimental effects depending on the initial ventricular myocyte repolarizing reserve.


Assuntos
Ventrículos do Coração/metabolismo , Leptina/farmacologia , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Canais de Potássio Shal/metabolismo , Regulação para Cima , Potenciais de Ação , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Células Cultivadas , Ventrículos do Coração/citologia , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Canais de Potássio Shal/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-24298268

RESUMO

Dietary treatment with high-fat diets (HFD) triggers diabetes and hyperleptinemia, concomitantly with a partial state of leptin resistance that affects hepatic and adipose tissue but not the heart. In this context, characterized by widespread steatosis, cardiac lipid content remains unchanged. As previously reported, HFD-evoked hyperleptinemia could be a pivotal element contributing to increase fatty-acid (FA) metabolism in the heart and to prevent cardiac steatosis. This metabolic adaptation might theoretically reduce energy efficiency in cardiomyocytes and lead to cardiac electrophysiological remodeling. Therefore the aim of the current study has been to investigate the impact of long-term HFD on cardiac metabolism and electrophysiological properties of the principal ionic currents responsible of the action potential duration in mouse cardiomyocytes. Male C57BL/6J mice were fed a control (10 kcal% from fat) or HFD (45 kcal% from fat) during 32 weeks. Quantification of enzymatic activities regulating mitochondrial uptake of pyruvate and FA showed an increase of both carnitine-palmitoyltransferase and citrate synthase activities together with a decrease of lactate dehydrogenase and pyruvate dehydrogenase activities. Increased expression of uncoupling protein-3, Mn-, and Cu/Zn-superoxide dismutases and catalase were also detected. Total glutathione/oxidized glutathione ratios were unaffected by HFD. These data suggest that HFD triggers adaptive mechanisms aimed at (i) facilitating FA catabolism, and (ii) preventing oxidative stress. All these changes did not affect the duration of action potentials in cardiomyocytes and only slightly modified electrocardiographic parameters.

20.
PLoS One ; 7(7): e41545, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844495

RESUMO

BACKGROUND: The natural triterpenes, erythrodiol and uvaol, exert anti-inflammatory, vasorelaxing and anti-proliferative effects. Angiotensin II is a well-known profibrotic and proliferative agent that participates in the cardiac remodeling associated with different pathological situations through the stimulation and proliferation of cardiac fibroblasts. Therefore, the aim of the study was to investigate the preventive effects of the natural triterpenes erythrodiol and uvaol on the proliferation and collagen production induced by angiotensin II in cardiac myofibroblasts. Their actions on cardiac hypertrophy triggered by angiotensin II were also studied. METHODOLOGY/PRINCIPAL FINDINGS: The effect of erythrodiol and uvaol on angiotensin II-induced proliferation was evaluated in cardiac myofibroblasts from adult rats in the presence or the absence of the inhibitors of PPAR-γ, GW9662 or JNK, SP600125. The effect on collagen levels induced by angiotensin II was evaluated in cardiac myofibroblasts and mouse heart. The presence of low doses of both triterpenes reduced the proliferation of cardiac myofibroblasts induced by angiotensin II. Pretreatment with GW9662 reversed the effect elicited by both triterpenes while SP600125 did not modify it. Both triterpenes at high doses produced an increase in annexing-V binding in the presence or absence of angiotensin II, which was reduced by either SP600125 or GW9662. Erythrodiol and uvaol decreased collagen I and galectin 3 levels induced by angiotensin II in cardiac myofribroblasts. Finally, cardiac hypertrophy, ventricular remodeling, fibrosis, and increases in myocyte area and brain natriuretic peptide levels observed in angiotensin II-infused mice were reduced in triterpene-treated animals. CONCLUSIONS/SIGNIFICANCE: Erythrodiol and uvaol reduce cardiac hypertrophy and left ventricle remodeling induced by angiotensin II in mice by diminishing fibrosis and myocyte area. They also modulate growth and survival of cardiac myofibroblasts. They inhibit the angiotensin II-induced proliferation in a PPAR-γ-dependent manner, while at high doses they activate pathways of programmed cell death that are dependent on JNK and PPAR-γ.


Assuntos
Angiotensina II/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Ácido Oleanólico/análogos & derivados , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Fibrose , Masculino , Camundongos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Ácido Oleanólico/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA