RESUMO
In the present study, the nematicidal and acaricidal activity of three biosurfactants (BS) produced by strains of the Bacillus genus was evaluated. The BS produced by the Bacillus ROSS2 strain presented a mortality of 39.29% in juveniles (J2) of Nacobbus aberrans at a concentration of 30 mg/mL, this same strain is the one that presented the highest mortality in Tyrophagus putrescentiae, which was 57.97% at a concentration of 39 mg/mL. The BS were qualitatively identified by thin layer chromatography and are lipid in nature based on the retention factor (Rf). While the GC-MS analysis identified two main compounds that are 4,7-Methano-1H-indene-2,6-dicarboxylic acid, 3a,4,7,7a-tetrahydro-1, and Methyl 4-(pyrrol-1-yl)-1,2,5-oxadiazole-3-carboxylate1, which is the polar part indicated by the presence of dicarboxylic acid and carboxylate groups; while the non-polar portion can be interpreted as a hydrocarbon chain of variable length. Based on the present results, BS can be an alternative for the biocontrol of the root-knot nematode N. aberrans and the mite T. putrescentiae.
Assuntos
Acaricidas , Bacillus , Tylenchoidea , Animais , Acaricidas/farmacologia , PyroglyphidaeRESUMO
The genus Serratia is widely distributed in soil, water, plants, animals, invertebrates, and humans. Some species of this genus have antifungal, antibacterial, and nematicidal activity. In this work, the nematicidal activity of the endophytic strain of Serratia sp. in chili, Capsicum annuum L., is reported, where at a bacterial concentration of 4 × 109 cel/mL, the penetration of nematodes into the roots significantly decreased by 91 and 55% at 7 and 21 days after inoculation. This bacterial concentration also significantly decreased the number of galls, eggs, egg masses and reproduction factor produced by Nacobbus aberrans in Chili plants, with respect to the control where this bacterial strain was not applied. In the analysis of the genome of the strain, based on average nucleotide identity (ANI), the isolate could be affiliated to the species Serratia ureilytica. The size of the genome is 5.4 Mb, with a 59.3% content of GC. Genes related to the synthesis of chitinases, siderophores, proteases C, serralisins, hemolysin, and serrawettin W2 that have been reported for biocontrol of nematodes were identified in the genome. It is the first report of Serratia ureilytica with nematicidal activity. Based on these results of nematicidal activity, this strain can be evaluated in the field as an alternative in the biocontrol of Nacobbus aberrans in chili cultivation.
RESUMO
In the present study, the nematicidal activity of an isolated strain of Mimosa pudica nodules was evaluated against the Nacobbus aberrans (J2) phytonymatodes with a mortality of 88.8%, while against the gastrointestinal nematode Haemonchus contortus (L3) and free-living Panagrellus redivivus was 100%. The ability to inhibit the growth of phytopathogenic fungi Fusarium sp., and Alternaria solani, as well as the oomycete Phytophthora capsici, this antifungal activity may be related to the ability to produce cellulases, siderophores and chitinases by this bacterial strain. Another important finding was the detection of plant growth promoter characteristics, such as auxin production and phosphate solubilization. The strain identified by sequences of the 16S and rpoB genes as Serratia sp. is genetically related to Serratia marcescens and Serratia nematodiphila. The promoter activity of plant growth, antifungal and nematicide of the Serratia sp. strain makes it an alternative for the biocontrol of fungi and nematodes that affect both the livestock and agricultural sectors, likewise, candidate as a growth-promoting bacterium.