Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Medicines (Basel) ; 6(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585249

RESUMO

The present article reviews the research progress of three major polyphenols (tannins, flavonoids and lignin carbohydrate complexes), chromone (backbone structure of flavonoids) and herbal extracts. Chemical modified chromone derivatives showed highly specific toxicity against human oral squamous cell carcinoma cell lines, with much lower toxicity against human oral keratinocytes, as compared with various anticancer drugs. QSAR analysis suggests the possible correlation between their tumor-specificity and three-dimensional molecular shape. Condensed tannins in the tea extracts inactivated the glucosyltransferase enzymes, involved in the biofilm formation. Lignin-carbohydrate complexes (prepared by alkaline extraction and acid-precipitation) and crude alkaline extract of the leaves of Sasa species (SE, available as an over-the-counter drug) showed much higher anti-HIV activity, than tannins, flavonoids and Japanese traditional medicine (Kampo). Long-term treatment with SE and several Kampo medicines showed an anti-inflammatory and anti-oxidant effects in small size of clinical trials. Although the anti-periodontitis activity of synthetic angiotensin II blockers has been suggested in many papers, natural angiotensin II blockers has not yet been tested for their possible anti-periodontitis activity. There should be still many unknown substances that are useful for treating the oral diseases in the natural kingdom.

2.
Int J Mol Sci ; 18(2)2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28212277

RESUMO

Accumulating evidence suggests that the risk of axillary osmidrosis is governed by a non-synonymous single nucleotide polymorphism (SNP) 538G>A in human ATP-binding cassette C11 (ABCC11) gene. However, little data are available for the expression of ABCC11 protein in human axillary apocrine glands that produce apocrine sweat-a source of odor from the armpits. To determine the effect of the non-synonymous SNP ABCC11 538G>A (G180R) on the ABCC11 in vivo, we generated transiently ABCC11-expressing transgenic mice with adenovirus vector, and examined the protein levels of each ABCC11 in the mice with immunoblotting using an anti-ABCC11 antibody we have generated in the present study. Furthermore, we examined the expression of ABCC11 protein in human axillary apocrine glands extracted from axillary osmidrosis patients carrying each ABCC11 genotype: 538GG, GA, and AA. Analyses of transiently ABCC11-expressing transgenic mice showed that ABCC11 538G>A diminishes the ABCC11 protein levels in vivo. Consistently, ABCC11 protein was detected in the human axillary apocrine glands of the 538GG homozygote or 538GA heterozygote, not in the 538AA homozygote. These findings would contribute to a better understanding of the molecular basis of axillary osmidrosis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Glândulas Apócrinas/metabolismo , Axila , Doenças das Glândulas Sudoríparas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Modelos Animais de Doenças , Expressão Gênica , Genótipo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Doenças das Glândulas Sudoríparas/genética
3.
Biomed Res Int ; 2016: 7670483, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057547

RESUMO

The importance of personalized medicine and healthcare is becoming increasingly recognized. Genetic polymorphisms associated with potential risks of various human genetic diseases as well as drug-induced adverse reactions have recently been well studied, and their underlying molecular mechanisms are being uncovered by functional genomics as well as genome-wide association studies. Knowledge of certain genetic polymorphisms is clinically important for our understanding of interindividual differences in drug response and/or disease risk. As such evidence accumulates, new clinical applications and practices are needed. In this context, the development of new technologies for simple, fast, accurate, and cost-effective genotyping is imperative. Here, we describe a simple isothermal genotyping method capable of detecting single nucleotide polymorphisms (SNPs) in the human ATP-binding cassette (ABC) transporter ABCC11 gene and its application to the clinical diagnosis of axillary osmidrosis. We have recently reported that axillary osmidrosis is linked with one SNP 538G>A in the ABCC11 gene. Our molecular biological and biochemical studies have revealed that this SNP greatly affects the protein expression level and the function of ABCC11. In this review, we highlight the clinical relevance and importance of this diagnostic strategy in axillary osmidrosis therapy.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Axila/fisiopatologia , Doenças das Glândulas Sudoríparas , Humanos , Polimorfismo de Nucleotídeo Único/genética , Doenças das Glândulas Sudoríparas/diagnóstico , Doenças das Glândulas Sudoríparas/genética , Doenças das Glândulas Sudoríparas/terapia
4.
Curr Pharm Biotechnol ; 12(4): 693-704, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21118085

RESUMO

Genetic polymorphisms and mutations in drug metabolizing enzymes, transporters, receptors, and other drug targets (e.g., toxicity targets) are linked to inter-individual differences in the efficacy and toxicity of many medications as well as risk of genetic diseases. Validation of clinically important genetic polymorphisms and the development of new technologies to rapidly detect clinically important variants are critical issues for advancing personalized medicine. A key requirement for the advancing personalized medicine resides in the ability of rapidly and conveniently testing patients' genetic polymorphisms and/or mutations. We have recently developed a rapid and cost-effective method, named Smart Amplification Process 2 (SmartAmp2), which enables us to detect genetic polymorphisms or mutations in target genes within 30 to 45 min under isothermal conditions without DNA isolation and PCR amplification. Detection of mutations or single nucleotide polymorphisms (SNPs) in human ABC transporter genes is becoming more important, since their functional impairments are reportedly associated with inherited diseases. Thus, certain genetic polymorphisms of ABC transporters are considered important biomarkers for diagnosis of inherited diseases and/or risk of drug-induced adverse reactions. In this review article, we will present the new technology of the SmartAmp2 method and its clinical applications for detection of SNPs in human ABC transporter genes, i.e., ABCC4 and ABCC11.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Mutação , Farmacogenética/métodos , Polimorfismo de Nucleotídeo Único/genética , Animais , Doença/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA