Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 206: 116697, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018822

RESUMO

The abundance of micro (MPs) and nano (NPs) sized plastic particles in the ocean is concerning due to their harmful effects on marine life. The interactions between MPs and NPs in the marine environment and their impact on marine biota remain not fully understood. This study contributes with new insights into the interaction between polystyrene NPs (PSNPs) and polyethylene MPs (PEMPs) on the clam Ruditapes decussatus. Results showed ingestion of MPs and NPs by clams, with PSNPs demonstrating higher toxicity in hemolymph. While no genotoxicity was observed, clams treated with MPs and the mixture showed increased acetylcolinesterase (AchE) activity over time. Additionally, the antioxidant defense system mitigated oxidative stress, suggesting effective neutralization of reactive oxygen species. Hazard assessment indicated the greatest impact on clam digestive glands after ten days of exposure, with an antagonistic interaction between MPs and NPs noted.

2.
J Hazard Mater ; 473: 134479, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762985

RESUMO

Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Biomarcadores/metabolismo , Antioxidantes/metabolismo , Ecotoxicologia , Dano ao DNA/efeitos dos fármacos
3.
Chemosphere ; 305: 135462, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35753414

RESUMO

The assessment of contaminants of emerging concern, alone and in mixtures, and their effects on marine biota requires attention. 5-Fluorouracil is a cytostatic category 3 anti-cancer medication (IARC) that is used to treat a variety of cancers, including colon, pancreatic, and breast cancer. In the presence of other pollutants, this pharmaceutical can interact and form mixtures of contaminants, such as adhering to plastics and interaction with metal nanoparticles. This study aimed to comprehend the effects of 5-Fluorouracil (5FU; 10 ng/L) and a mixture of emerging contaminants (Mix): silver nanoparticles (nAg; 20 nm; 10 µg/L), polystyrene nanoparticles (nPS; 50 nm; 10 µg/L) and 5FU (10 ng/L), in an in vivo (21 days) exposure of the mussel Mytilus galloprovincialis. A multibiomarker approach namely genotoxicity, the antioxidant defence system (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione - S - transferases (GST) activities), and oxidative damage (LPO) was used to assess the effects in gills and digestive gland of mussels. Both treatments cause genotoxicity in mussel's haemolymph, and antagonism between contaminants was observed in the Mix. Genotoxicity observed confirms 5FU's mode of action (MoA) by DNA damage. The antioxidant defence system of mussels exposed to 5FU kicked in and counter balanced ROS generated during the exposure, though the same was not seen in Mix-exposed mussels. Mussels were able to withstand the effects of the single compound but not the effects of the Mix. For oxidative stress and damage, the interactions of the components of the mixture have a synergistic effect.


Assuntos
Citostáticos , Nanopartículas Metálicas , Mytilus , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Citostáticos/toxicidade , Fluoruracila/toxicidade , Glutationa/farmacologia , Peroxidação de Lipídeos , Nanopartículas Metálicas/toxicidade , Mytilus/metabolismo , Estresse Oxidativo , Prata/toxicidade , Poluentes Químicos da Água/análise
4.
Chemosphere ; 287(Pt 4): 132356, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34600009

RESUMO

Nanoplastics (NP) (1-100 nm) are a growing global concern, and their adverse effects in marine organisms are still scarce. This study evaluated the effects of polystyrene nanoplastics (10 µg/L; 50 nm nPS) in the marine mussel Mytilus galloprovincialis after a 21 - day exposure. The hydrodynamic diameter and zeta potential of nPS were analysed, over time, in seawater and ultrapure water. A multibiomarker approach (genotoxicity (the comet assay) was assessed in mussel haemocytes, and the antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)), biotransformation enzyme (glutathione - S - transferase (GST)), and oxidative damage (LPO)) was assessed in gills and digestive glands to evaluate the toxicity of nPS towards mussels. In seawater, aggregation of nPS is favoured and consequently the hydrodynamic diameter increases. Genotoxicity was highly noticeable in mussels exposed to nPS, presenting a higher % tail DNA when compared to controls. Antioxidant enzymes are overwhelmed after nPS exposure, leading to oxidative damage in both tissues. Results showed that mussel tissues are incapable of dealing with the effects that this emerging stressor pursues towards the organism. The Integrated Biomarker Response index, used to summarise the biomarkers analysed into one index, shows that nPS toxicity towards mussels are both tissue and time dependent, being that gills are the tissue most compromised.


Assuntos
Mytilus , Nanopartículas , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Brânquias/metabolismo , Mytilus/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
5.
Environ Pollut ; 273: 116426, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33493763

RESUMO

Emerging contaminants, such as nanoplastics, are gaining a vast interest within the scientific community. Most of the plastic debris found in the marine environment originates from land-based sources, and once in the marine environment, plastic can be degraded into smaller fragments. Nanoplastics are considered to fall within the definition of other nanoparticles (1-100 nm in size) and may be divided into primary or secondary nanoplastics. Primary nanoplastics are those that enter the environment in their original small size associated with specific applications and consumer products, whilst secondary nanoplastics are a consequence of macro/microplastic degradation. The formation of nanoplastics changes the physical-chemical characteristics of the particle, thus at a nanoscale, it is expected that the strength, conductivity, and reactivity of the nanoparticles will differ substantially from macro/micro-sized particles. To date, the toxicity nanoplastics may pursue on marine biota is still scarce. Herein, a review of the available data on the effects of different polymer types of nanoplastics specific to marine biota is accounted for.

6.
Mar Environ Res ; 164: 105249, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33477023

RESUMO

Microplastics are widespread in the marine environment, whereby the uptake of these tiny particles by organisms, can cause adverse biological responses. Plastic debris also act as a vector of many contaminants, herein depending on type, size, shape and chemical properties, possibly intensifying their effects on marine organisms. This study aimed to assess the accumulation and potential toxicity of different sizes of microplastics with and without adsorbed perfluorooctane sulfonic acid (PFOS) in the clam Scrobicularia plana. Clams were exposed to low-density polyethylene microplastics (1 mg L-1) of two different sizes (4-6 and 20-25 µm) virgin and contaminated with PFOS (55.7 ± 5.3 and 46.1 ± 2.9 µg g-1 respectively) over 14 days. Microplastic ingestion, PFOS accumulation and filtration rate were determined along with a multi biomarker approach to assess the biological effects of microplastics ingestion. Biomarkers include oxidative stress (superoxide dismutase, catalase, glutathione peroxidases), biotransformation enzymes (glutathione-S-transferases activity), neurotoxicity (acetylcholinesterase activity), oxidative damage and apoptosis. Microplastics ingestion and PFOS accumulation was microplastic size dependent but not PFOS dependent and filtration rate was reduced at the end of the exposure. Reactive oxygen species in gills and digestive gland were generated as a result of exposure to both types of microplastics, confirming the disturbance of the antioxidant system. Larger virgin microparticles lead to stronger impacts, when compared to smaller ones which was also supported by the Integrated Biomarker Responses index calculated for both tissues. An anti-apoptotic response was detected in digestive glands under exposure to any of the MPs treatments.


Assuntos
Bivalves , Poluentes Químicos da Água , Ácidos Alcanossulfônicos , Animais , Fluorocarbonos , Microplásticos , Plásticos/toxicidade , Polietileno/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA