Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Acta Trop ; 256: 107239, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735448

RESUMO

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi (Chagas, 1909). One of the primary vectors of T. cruzi in South America is Triatoma infestans (Klug, 1834). This triatomine species is distributed across a huge latitudinal gradient, inhabiting domiciliary , peridomiciliary , and wild environments. Its wide geographic distribution provides an excellent opportunity to study the relationships between environmental gradients and intraspecific morphological variation. In this study, we investigated variations in wing size and shape in T. infestans across six ecoregions. We aimed to address the following questions: How do wing size and shape vary on a regional scale, does morphological variation follow specific patterns along an environmental or latitudinal gradient, and what environmental factors might contribute to wing variation? Geometric morphometric methods were applied to the wings of 162 females belonging to 21 T. infestans populations, 13 from Argentina (n = 105), 5 from Bolivia (n = 42), and 3 from Paraguay (n = 15). A comparison of wing centroid size across the 21 populations showed significant differences. Canonical Variate Analysis (CVA) revealed significant differences in wing shape between the populations from Argentina, Bolivia, and Paraguay, although there was a considerable overlap, especially among the Argentinian populations. Well-structured populations were observed for the Bolivian and Paraguayan groups. Two analyses were performed to assess the association between wing size and shape, geographic and climatic variables: multiple linear regression analysis (MRA) for size and Partial Least Squares (PLS) regression for shape. The MRA showed a significant general model fit. Six temperature-related variables, one precipitation-related variable, and the latitude showed significant associations with wing size. The PLS analysis revealed a significant correlation between wing shape with latitude, longitude, temperature-related, and rainfall-related variables. Wing size and shape in T. infestans populations varied across geographic distribution. Our findings demonstrate that geographic and climatic variables significantly influence T. infestans wing morphology.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38663817

RESUMO

BACKGROUND: Alternaria alternata is associated with allergic respiratory diseases, which can be managed with allergen extract-based diagnostics and immunotherapy. It is not known how spores and hyphae contribute to allergen content. Commercial allergen extracts are manufactured by extracting proteins without separating the different forms of the fungus. OBJECTIVE: We sought to determine differences between spore and hyphae proteomes and how allergens are distributed in Aalternata. METHODS: Data-independent acquisition mass spectrometry was used to quantitatively compare the proteomes of asexual spores (nongerminating and germinating) with vegetative hyphae. RESULTS: We identified 4515 proteins in nongerminating spores, germinating spores, and hyphae; most known allergens are more abundant in nongerminating spores. On comparing significant protein fold-change differences between nongerminating spores and hyphae, we found that 174 proteins were upregulated in nongerminating spores and 80 proteins in hyphae. Among the spore proteins are ones functionally involved in cell wall synthesis, responding to cellular stress, and maintaining redox balance and homeostasis. On comparing nongerminating and germinating spores, 25 proteins were found to be upregulated in nongerminating spores and 54 in germinating spores. Among the proteins specific to germinating spores were proteases known to be virulence factors. One of the most abundant proteins in the spore proteome is sialidase, which has not been identified as an allergen but may be important in the pathogenicity of this fungus. Major allergen Alt a 1 is present at low levels in spores and hyphae and appears to be largely secreted into growth media. CONCLUSIONS: Spores and hyphae express overlapping but distinct proteomes. Most known allergens are found more abundantly in nongerminating spores.

3.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067505

RESUMO

The treatment of dermatophytoses, the most common human fungal infections, requires new alternatives. The aim of this study was to determine the antidermatophytic activity of the aqueous Azorean Black Tea extract (ABT), together with an approach to the mechanisms of action. The phytochemical analysis of ABT extract was performed by HPLC. The dermatophytes susceptibility was assessed using a broth microdilution assay; potential synergies with terbinafine and griseofulvin were evaluated by the checkerboard assay. The mechanism of action was appraised by the quantification of the fungal cell wall chitin and ß-1,3-glucan, and by membrane ergosterol. The presence of ultrastructural modifications was studied by Transmission Electron Microscopy (TEM). The ABT extract contained organic and phenolic acids, flavonoids, theaflavins and alkaloids. It showed an antidermatophytic effect, with MIC values of 250 µg/mL for Trichophyton mentagrophytes, 125 µg/mL for Trichophyton rubrum and 500 µg/mL for Microsporum canis; at these concentrations, the extract was fungicidal. An additive effect of ABT in association to terbinafine on these three dermatophytes was observed. The ABT extract caused a significant reduction in ß-1,3-glucan content, indicating the synthesis of this cell wall component as a possible target. The present study identifies the antidermatophytic activity of the ABT and highlights its potential to improve the effectiveness of conventional topical treatment currently used for the management of skin or mucosal fungal infections.


Assuntos
Arthrodermataceae , Camellia sinensis , Fungicidas Industriais , Micoses , Humanos , Antifúngicos/química , Terbinafina/farmacologia , Chá , Testes de Sensibilidade Microbiana , Fungicidas Industriais/farmacologia , Extratos Vegetais/farmacologia , Micoses/tratamento farmacológico , Trichophyton
4.
Microorganisms ; 11(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38137994

RESUMO

The Triatoma brasiliensis species complex is a monophyletic group encompassing two subspecies and six species. Recently, a hybrid zone of members of this complex was recorded in the state of Pernambuco. Questions concerning the capability of the hybrids to become infected with Trypanosoma cruzi have been raised. This study aimed to compare the susceptibility of Triatoma b. brasiliensis, Triatoma juazeirensis, and their experimental hybrids to infection with T. cruzi. We infected the parentals and their experimental hybrids (obtained through reciprocal crosses) through artificial feeding with citrated rabbit blood, to which the TcI 0354 strain of T. cruzi had been added. The insects were weighed before and after feeding on the rabbit blood, and then they were dissected on the 10th, 20th, and 30th day after infection. Both the hybrids and the parentals remained infected throughout the experiment. The parasite was mostly found in the epimastigote form. The number of epimastigotes was significantly lower in the stomach and small intestine of T. juazeirensis than in the hybrids or in T. b. brasiliensis. A significantly higher percentage of metacyclic trypomastigotes was detected in the small intestine and rectum of the hybrids. Hybrids demonstrated higher susceptibility to the TcI 0354 strain than their parentals, opening up new avenues to be investigated.

5.
FEMS Microbiol Rev ; 47(6)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884396

RESUMO

Alternaria species are cosmopolitan fungi darkly pigmented by melanin that infect numerous plant species causing economically important agricultural spoilage of various food crops. Alternaria spp. also infect animals, being described as entomopathogenic fungi but also infecting warm-blooded animals, including humans. Their clinical importance in human health, as infection agents, lay in the growing number of immunocompromised patients. Moreover, Alternaria spp. are considered some of the most abundant and potent sources of airborne sensitizer allergens causing allergic respiratory diseases, as severe asthma. Among the numerous strategies deployed by Alternaria spp. to attack their hosts, the production of toxins, carrying critical concerns to public health as food contaminant, and the production of hydrolytic enzymes such as proteases, can be highlighted. Alternaria proteases also trigger allergic symptoms in individuals with fungal sensitization, acting as allergens and facilitating antigen access to the host subepithelium. Here, we review the current knowledge about the mechanisms of Alternaria pathogenesis in plants and animals, the strategies used by Alternaria to cope with the host defenses, and the involvement Alternaria allergens and mechanisms of sensitization.


Assuntos
Alérgenos , Alternaria , Animais , Humanos , Peptídeo Hidrolases
6.
Microorganisms ; 11(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37894056

RESUMO

The role of the fungal community, the mycobiota, in the health of the vagina is currently an important area of research. The emergence of new sequencing technologies and advances in bioinformatics made possible the discovery of novel fungi inhabiting this niche. Candida spp. constitutes the most important group of opportunistic pathogenic fungi, being the most prevalent fungal species in vulvovaginal infections. However, fungi such as Rhodotorula spp., Naganishia spp. and Malassezia spp. have emerged as potential pathogens in this niche, and therefore it is clinically relevant to understand their ecological interaction with Candida spp. The main aim of this study was to evaluate the impact of yeasts on Candida albicans' pathogenicity, focusing on in-vitro growth, and biofilm formation at different times of co-culture and germ tube formation. The assays were performed with isolated species or with co-cultures of C. albicans (ATCC10231) with one other yeast species: Rhodotorula mucilaginosa (DSM13621), Malassezia furfur (DSM6170) or Naganishia albida (DSM70215). The results showed that M. furfur creates a symbiotic relationship with C. albicans, enhancing the growth rate of the co-culture (149.69%), and of germ tube formation of C. albicans (119.8%) and inducing a higher amount of biofilm biomass of the co-culture, both when mixed (154.1%) and preformed (166.8%). As for the yeasts R. mucilaginosa and N. albida, the relationship is antagonistic (with a significant decrease in all assays), thus possibly repressing the mixture's pathogenicity. These results shed light on the complex interactions between yeasts in the vaginal mycobiome.

7.
Sci Rep ; 13(1): 15772, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737249

RESUMO

Apparent diffusion coefficient (ADC) of magnetic resonance imaging (MRI) is an indispensable imaging technique in clinical neuroimaging that quantitatively assesses the diffusivity of water molecules within tissues using diffusion-weighted imaging (DWI). This study focuses on developing a robust machine learning (ML) model to predict the aggressiveness of gliomas according to World Health Organization (WHO) grading by analyzing patients' demographics, higher-order moments, and grey level co-occurrence matrix (GLCM) texture features of ADC. A population of 722 labeled MRI-ADC brain image slices from 88 human subjects was selected, where gliomas are labeled as glioblastoma multiforme (WHO-IV), high-grade glioma (WHO-III), and low-grade glioma (WHO I-II). Images were acquired using 3T-MR systems and a region of interest (ROI) was delineated manually over tumor areas. Skewness, kurtosis, and statistical texture features of GLCM (mean, variance, energy, entropy, contrast, homogeneity, correlation, prominence, and shade) were calculated using ADC values within ROI. The ANOVA f-test was utilized to select the best features to train an ML model. The data set was split into training (70%) and testing (30%) sets. The train set was fed into several ML algorithms and selected most promising ML algorithm using K-fold cross-validation. The hyper-parameters of the selected algorithm were optimized using random grid search technique. Finally, the performance of the developed model was assessed by calculating accuracy, precision, recall, and F1 values reported for the test set. According to the ANOVA f-test, three attributes; patient gender (1.48), GLCM energy (9.48), and correlation (13.86) that performed minimum scores were excluded from the dataset. Among the tested algorithms, the random forest classifier(0.8772 ± 0.0237) performed the highest mean-cross-validation score and selected to build the ML model which was able to predict tumor categories with an accuracy of 88.14% over the test set. The study concludes that the developed ML model using the above features except for patient gender, GLCM energy, and correlation, has high prediction accuracy in glioma grading. Therefore, the outcomes of this study enable to development of advanced tumor classification applications that assist in the decision-making process in a real-time clinical environment.


Assuntos
Glioma , Imageamento por Ressonância Magnética , Humanos , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Neuroimagem , Aprendizado de Máquina
8.
Microbiol Spectr ; : e0123823, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37733471

RESUMO

Phagolysosomes are crucial organelles during the elimination of pathogens by host cells. The maintenance of their membrane integrity is vital during stressful conditions, such as during Candida albicans infection. As the fungal hyphae grow, the phagolysosome membrane expands to ensure that the growing fungus remains entrapped. Additionally, actin structures surrounding the hyphae-containing phagosome were recently described to damage and constrain these pathogens inside the host vacuoles by inducing their folding. However, the molecular mechanism involved in the phagosome membrane adaptation during this extreme expansion process is still unclear. The main goal of this study was to unveil the interplay between phagosomal membrane integrity and folding capacity of C. albicans-infected macrophages. We show that components of the repair machinery are gradually recruited to the expanding phagolysosomal membrane and that their inhibition diminishes macrophage folding capacity. Through an analysis of an RNAseq data set of C. albicans-infected macrophages, we identified Cx43, a gap junction protein, as a putative player involved in the interplay between lysosomal homeostasis and actin-related processes. Our findings further reveal that Cx43 is recruited to expand phagosomes and potentiates the hyphal folding capacity of macrophages, promoting their survival. Additionally, we reveal that Cx43 can act as an anchor for complexes involved in Arp2-mediated actin nucleation during the assembly of actin rings around hyphae-containing phagosomes. Overall, this work brings new insights on the mechanisms by which macrophages cope with C. albicans infection ascribing to Cx43 a new noncanonical regulatory role in phagosome dynamics during pathogen phagocytosis. IMPORTANCE Invasive candidiasis is a life-threatening fungal infection that can become increasingly resistant to treatment. Thus, strategies to improve immune system efficiency, such as the macrophage response during the clearance of the fungal infection, are crucial to ameliorate the current therapies. Engulfed Candida albicans, one of the most common Candida species, is able to quickly transit from yeast-to-hypha form, which can elicit a phagosomal membrane injury and ultimately lead to macrophage death. Here, we extend the understanding of phagosome membrane homeostasis during the hypha expansion and folding process. We found that loss of phagosomal membrane integrity decreases the capacity of macrophages to fold the hyphae. Furthermore, through a bioinformatic analysis, we reveal a new window of opportunities to disclose the mechanisms underlying the hyphal constraining process. We identified Cx43 as a new weapon in the armamentarium to tackle infection by potentiating hyphal folding and promoting macrophage survival.

9.
Plants (Basel) ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447064

RESUMO

Withania chevalieri, endogenous from Cape Verde, is a medicinal plant used in ethnomedicine with a large spectrum of applications, such as treating skin fungal infections caused by dermatophytes. The aim of this work was to chemically characterize the W. chevalieri crude ethanolic extract (WcCEE), and evaluate its bioactivities as antidermatophytic, antioxidant, anti-inflammatory and anticancer, as well as its cytotoxicity. WcCEE was chemically characterized via HPLC-MS. The minimal inhibitory concentration, minimal fungicidal concentration, time-kill and checkerboard assays were used to study the antidermatophytic activity of WcCEE. As an approach to the mechanism of action, the cell wall components, ß-1,3-glucan and chitin, and cell membrane ergosterol were quantified. Transmission electron microscopy (TEM) allowed for the study of the fungal ultrastructure. WcCEE contained phenolic acids, flavonoids and terpenes. It had a concentration-dependent fungicidal activity, not inducing relevant resistance, and was endowed with synergistic effects, especially terbinafine. TEM showed severely damaged fungi; the cell membrane and cell wall components levels had slight modifications. The extract had antioxidant, anti-inflammatory and anti-cancer activities, with low toxicity to non-tumoral cell lines. The results demonstrated the potential of WcCEE as an antidermatophytic agent, with antioxidant, anti-inflammatory and anticancer activity, to be safely used in pharmaceutical and dermocosmetic applications.

10.
J Med Entomol ; 60(4): 680-689, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37094884

RESUMO

Triatoma costalimai and Triatoma jatai are related species, which occur in sympatry in Paranã, Tocantins, Brazil, in rocky outcrops and in peridomicile and intradomicile environments. This study compared morphologic and morphometric aspects of the eggs of these species using optical microscopy (OM) and scanning electron microscopy (SEM). Operculum cells (OP) and egg body (EB) were drawn and photographed, their surfaces were measured, and spots were quantified. Statistical analyses were performed using ANOVA and t-tests. OM showed an egg exochorium with spots in T. costalimai and a predominance of short lines in T. jatai. We found significant differences in egg length and width, which were larger in T. costalimai. SEM analysis showed that the operculum of both species had cells with straight and/or rounded rims, with a smooth aspect, random spots, and predominantly pentagonal shape. In the EB, hexagonal cells were predominant, with indices exceeding 60% in both species. Triatoma costalimai cells were flat, with a discrete definition of the rims, whereas T. jatai cells were smooth with well-defined rims. Statistical tests showed significant differences for EB, where T. costalimai cells were larger and have more spots than T. jatai. The eggs can thus be differentiated, thereby contributing to integrative taxonomy.


Assuntos
Doença de Chagas , Triatoma , Triatominae , Animais , Simpatria , Microscopia Eletrônica de Varredura , Brasil
11.
Microorganisms ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838208

RESUMO

Coffee is one of the most popular and consumed products in the world, generating tons of solid waste known as spent coffee grounds (SCG), containing several bioactive compounds. Here, the antifungal activity of ethanolic SCG extract from caffeinated and decaffeinated coffee capsules was evaluated against yeasts and filamentous fungi. These extracts had antifungal activity against Candida krusei, Candida parapsilosis, Trichophyton mentagrophytes, and Trichophyton rubrum, all skin fungal agents. Moreover, SCG had fungicidal activity against T. mentagrophytes and T. rubrum. To understand the underlying mechanisms of the antifungal activity, fungal cell membrane and cell wall components were quantified. SCG caused a significant reduction of the ergosterol, chitin, and ß-(1,3)-glucan content of C. parapsilosis, revealing the synthesis of this membrane component and cell wall components as possible targets of these extracts. These extracts were cytotoxic for the tumoral cell lines tested but not for the non-tumoral PLP2 cell line. The analysis of the phenolic compounds of these extracts revealed the presence of caffeoylquinic acid, feruloylquinic acid, and caffeoylshikimic acid derivatives. Overall, this confirmed the antifungal activity of spent coffee grounds, presenting a potential increase in the sustainability of the life cycle of coffee grounds, as a source for the development of novel antifungal formulations, especially for skin or mucosal fungal infections.

12.
Sci Rep ; 12(1): 18058, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302823

RESUMO

SARS-CoV-2 transmission occurs mainly indoors, through virus-laden airborne particles. Although the presence and infectivity of SARS-CoV-2 in aerosol are now acknowledged, the underlying circumstances for its occurrence are still under investigation. The contamination of domiciliary environments during the isolation of SARS-CoV-2-infected patients in their respective rooms in individual houses and in a nursing home was investigated by collecting surface and air samples in these environments. Surface contamination was detected in different contexts, both on high and low-touch surfaces. To determine the presence of virus particles in the air, two sampling methodologies were used: air and deposition sampling. Positive deposition samples were found in sampling locations above the patient's height, and SARS-CoV-2 RNA was detected in impactation air samples within a size fraction below 2.5 µm. Surface samples rendered the highest positivity rate and persistence for a longer period. The presence of aerosolized SARS-CoV-2 RNA occurred mainly in deposition samples and closer to symptom onset. To evaluate the infectivity of selected positive samples, SARS-CoV-2 viability assays were performed, but our study was not able to validate the virus viability. The presented results confirm the presence of aerosolized SARS-CoV-2 RNA in indoor compartments occupied by COVID-19 patients with mild symptoms, in the absence of aerosol-generating clinical procedures.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral/genética , Aerossóis e Gotículas Respiratórios
13.
Biomed Eng Online ; 21(1): 52, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915448

RESUMO

BACKGROUND: Diffusion-weighted (DW) imaging is a well-recognized magnetic resonance imaging (MRI) technique that is being routinely used in brain examinations in modern clinical radiology practices. This study focuses on extracting demographic and texture features from MRI Apparent Diffusion Coefficient (ADC) images of human brain tumors, identifying the distribution patterns of each feature and applying Machine Learning (ML) techniques to differentiate malignant from benign brain tumors. METHODS: This prospective study was carried out using 1599 labeled MRI brain ADC image slices, 995 malignant, 604 benign from 195 patients who were radiologically diagnosed and histopathologically confirmed as brain tumor patients. The demographics, mean pixel values, skewness, kurtosis, features of Grey Level Co-occurrence Matrix (GLCM), mean, variance, energy, entropy, contrast, homogeneity, correlation, prominence and shade, were extracted from MRI ADC images of each patient. At the feature selection phase, the validity of the extracted features were measured using ANOVA f-test. Then, these features were used as input to several Machine Learning classification algorithms and the respective models were assessed. RESULTS: According to the results of ANOVA f-test feature selection process, two attributes: skewness (3.34) and GLCM homogeneity (3.45) scored the lowest ANOVA f-test scores. Therefore, both features were excluded in continuation of the experiment. From the different tested ML algorithms, the Random Forest classifier was chosen to build the final ML model, since it presented the highest accuracy. The final model was able to predict malignant and benign neoplasms with an 90.41% accuracy after the hyper parameter tuning process. CONCLUSIONS: This study concludes that the above mentioned features (except skewness and GLCM homogeneity) are informative to identify and differentiate malignant from benign brain tumors. Moreover, they enable the development of a high-performance ML model that has the ability to assist in the decision-making steps of brain tumor diagnosis process, prior to attempting invasive diagnostic procedures, such as brain biopsies.


Assuntos
Neoplasias Encefálicas , Aprendizado de Máquina , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Estudos Retrospectivos
14.
Life (Basel) ; 12(6)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35743869

RESUMO

Previous studies have revealed that Candida albicans isolates involved in chronic vulvovaginal candidosis (cVVC) phenotypically express less virulent traits than clinical isolates involved in sporadic infections. In this study, we aimed to further explore this finding by studying the behaviour of those same clinical isolates in in-vitro models of infection. Eighteen clinical Candida albicans isolates were collected from women suffering sporadic (eight isolates) or chronic infections (ten isolates). Adhesion to HeLa cells (human cervical cancer epithelial cell line) and resistance to phagocytosis by RAW 264.7 cells (murine macrophages cell line) were tested in-vitro. In addition, phenotypic expression of virulence factors related with either adhesion or resistance to phagocytosis was tested in-vitro. Results indicated that yeast isolates involved in sporadic infection adhered in a higher proportion of HeLa cells than those of chronic infections, which was related with their ability to produce biofilm (p < 0.05). The ability to evade phagocytosis was related to an elevated production of proteases (p < 0.05) by chronic isolates, while sporadic isolates' resistance to phagocytosis was related to a higher hydrophobicity of cell walls (p < 0.05). We conclude that the evasion of macrophage-mediated phagocytosis related to the production of proteases might be an important factor involved in the recurrence of vulvovaginal candidosis infection.

15.
Vaccines (Basel) ; 10(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35455352

RESUMO

The ChAdOx1 nCoV-19 vector vaccine (Vaxzevria, AstraZeneca, Cambridge, UK) was developed at Oxford University and is considered safe for the administration in lactating mothers. Nevertheless, as a novel vaccine, there are gaps in the knowledge regarding possible adverse events in breastfeeding infants of vaccinated mothers. This case report provides first-time data on a possible delayed, cutaneous, adverse reaction in a breastfed, 16-month-old female infant after the first administration of the AstraZeneca vaccine to her 33-year-old mother. Even though, no clinical adverse effects were observed in the mother, her daughter had a 2-day rash in the lower extremities and face. The infant's cutaneous rashes might be a coincidental event. However, all skin lesions were analogous to previous descriptions and photographs of dermatologic reactions, which resolved spontaneously with no medical intervention, in people who had been vaccinated with other COVID-19 vaccines. Our aim is that this short report contributes to the enhancement of parental awareness about the possibility of similar skin rashes in breastfed children when the mothers receive a vaccination and the importance of reporting those adverse reactions to the competent authorities.

16.
Biomol Concepts ; 13(1): 89-102, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35247041

RESUMO

Recently, there has been increased interest in the development of novel antimicrobial compounds for utilization in a variety of sectors, including pharmaceutical, biomedical, textile, and food. The use, overuse, and misuse of synthetic compounds or derivatives have led to an increase of pathogenic microorganisms gaining resistance to the traditional antimicrobial therapies, which has led to an increased need for alternative therapeutic strategies. Seaweed are marine organisms that can be cultivated sustainably, and they are a source of polar molecules, such as pigments and phenolic compounds, which demonstrated antimicrobial potential. This review focuses on current knowledge about pigments and phenolic compounds isolated from seaweeds, their chemical characteristics, antimicrobial bioactivity, and corresponding mechanism of action.


Assuntos
Anti-Infecciosos , Alga Marinha , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Alga Marinha/química
17.
Trends Microbiol ; 30(6): 519-523, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35346551

RESUMO

Macrophages play a crucial role in fungal clearance during Candida albicans infection. In order to eliminate the intracellular fungi and survive, macrophages need to quickly respond to the dimorphic transition by repairing the phagolysosomal membrane. Also, actin-contractile rings were recently suggested as a powerful weapon to dampen hyphal growth.


Assuntos
Candida albicans , Candidíase , Actinas , Candidíase/microbiologia , Humanos , Hifas , Macrófagos/microbiologia
18.
PLoS Negl Trop Dis ; 15(11): e0009919, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752464

RESUMO

An outbreak of Chagas disease, possibly involving its vector Triatoma brasiliensis brasiliensis, was identified in the state of Rio Grande do Norte (RN). Given the historical significance of this vector in public health, the study aimed to evaluate its role in the transmission dynamics of the protozoan Trypanosoma cruzi in an area undergoing desertification in the Seridó region, RN, Brazil. We captured triatomines in sylvatic and anthropic ecotopes. Natural vector infection was determined using parasitological and molecular methods and we identified discrete typing units (DTUs) of T. cruzi by analyzing the COII gene of mtDNA, 24Sα rDNA, and mini-exon gene. Their blood meals sources were identified by amplification and sequencing of the mtDNA cytochrome b gene. A total of 952 T. b. brasiliensis were captured in peridomestic (69.9%) and sylvatic ecotopes (30.4%). A wide range of natural infection rates were observed in peridomestic (36.0% - 71.1%) and sylvatic populations (28.6% - 100.0%). We observed the circulation of TcI and TcII DTUs with a predominance of Tcl in sylvatic and peridomestic environments. Kerodon rupestris, rocky cavy (13/39), Homo sapiens, human (8/39), and Bos taurus, ox (6/39) were the most frequently detected blood meals sources. Thus, Triatoma b. brasiliensis is invading and colonizing the human dwellings. Furthermore, high levels of natural infection, coupled with the detection of TcI and TcII DTUs, and also the detection of K. rupestris and H. sapiens as blood meals sources of infected T. b. brasiliensis indicate a risk of T. cruzi transmission to human populations in areas undergoing desertification.


Assuntos
Doenças dos Bovinos/transmissão , Doença de Chagas/transmissão , Doença de Chagas/veterinária , Insetos Vetores/fisiologia , Triatoma/parasitologia , Trypanosoma cruzi/fisiologia , Zoonoses/transmissão , Animais , Brasil/epidemiologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Doença de Chagas/epidemiologia , Doença de Chagas/parasitologia , Comportamento Alimentar , Feminino , Humanos , Insetos Vetores/parasitologia , Masculino , Triatoma/fisiologia , Trypanosoma cruzi/classificação , Trypanosoma cruzi/genética , Trypanosoma cruzi/isolamento & purificação , Zoonoses/epidemiologia , Zoonoses/parasitologia
19.
Front Microbiol ; 12: 691433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512569

RESUMO

The genus Alternaria includes several of fungi that are darkly pigmented by DHN-melanin. These are pathogenic to plants but are also associated with human respiratory allergic diseases and with serious infections in immunocompromised individuals. The present work focuses on the alterations of the composition and structure of the hyphal cell wall of Alternaria alternata occuring under the catabolism of L-tyrosine and L-phenylalanine when cultured in minimal salt medium (MM). Under these growing conditions, we observed the released of a brown pigment into the culture medium. FTIR analysis demonstrates that the produced pigment is chemically identical to the pigment released when the fungus is grown in MM with homogentisate acid (HGA), the intermediate of pyomelanin, confirming that this pigment is pyomelanin. In contrast to other fungi that also synthesize pyomelanin under tyrosine metabolism, A. alternata inhibits DHN-melanin cell wall accumulation when pyomelanin is produced, and this is associated with reduced chitin cell wall content. When A. alternata is grown in MM containing L-phenylalanine, a L-tyrosine percursor, pyomelanin is synthesized but only at trace concentrations and A. alternata mycelia display an albino-like phenotype since DHN-melanin accumulation is inhibited. CmrA, the transcription regulator for the genes coding for the DHN-melanin pathway, is involved in the down-regulation of DHN-melanin synthesis when pyomelanin is being synthetized, since the CMRA gene and genes of the enzymes involved in DHN-melanin synthesis pathway showed a decreased expression. Other amino acids do not trigger pyomelanin synthesis and DHN-melanin accumulation in the cell wall is not affected. Transmission and scanning electron microscopy show that the cell wall structure and surface decorations are altered in L-tyrosine- and L-phenylalanine-grown fungi, depending on the pigment produced. In summary, growth in presence of L-tyrosine and L-phenylalanine leads to pigmentation and cell wall changes, which could be relevant to infection conditions where these amino acids are expected to be available.

20.
J Fungi (Basel) ; 7(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34436162

RESUMO

Onychomycosis is one of the most frequent reasons for visiting podiatrist clinics. Complementary tests and the accurate identification of the infectious agents are key issues for a successful treatment of onychomycosis. This is particularly important when lifestyle, age and immunodepressed patients increase the prevalence of non-dermatophyte fungal infection. In this paper, we describe issues related to onychomycosis prevalence in a population of patients, mostly with rural lifestyles, visiting a podiatry clinic in a rural area of Spain. A total of 51 cases were studied with an average age of 65.96 ± 21.28 years (the youngest being 16 years and the oldest being 95 years). Fungal agents were isolated using conventional sampling and microbiological culture techniques. The results obtained with these techniques were compared with the results obtained with a direct methodology using molecular biology, by PCR and nucleotide sequencing of the ITS-5.8S rDNA fragment. The classical culture methodology confirmed the infection in 76.5% of the samples (n = 39), while the PCR confirmed the infection in 84.3% (n = 51) of the nails, although the difference between these results did not show statistical significance (p = 0.388). We found a high variability in agents, with more yeasts than dermatophytes as etiological agents of onychomycosis. However, only among individuals older than 65 years, was the difference between yeasts (82%) and dermatophytes (18%) was statistically significant (p = 0.004). Among the agents of non-dermatophyte onychomycosis, we found predominantly fungi (yeasts) of the Candida genus, interestingly with no isolates of Candida albicans, and moulds of the Aspergillus genus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA