Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Bioinform ; 3: 1137815, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521316

RESUMO

One of the main topics of cardiovascular research is the study of calcium (Ca2+) handling, as even small changes in Ca2+ concentration can alter cell functionality (Bers, Annu Rev Physiol, 2014, 76, 107-127). Ionic calcium (Ca2+) plays the role of a second messenger in eukaryotic cells, associated with cellular functions such as cell cycle regulation, transport, motility, gene expression, and regulation. The use of fluorometric techniques in isolated cells loaded with Ca2+-sensitive fluorescent probes allows quantitative measurement of dynamic events occurring in living, functioning cells. The Cardiomyocytes Images Analyzer Python (CardIAP) application addresses the need to analyze and retrieve information from confocal microscopy images systematically, accurately, and rapidly. Here we present CardIAP, an open-source tool developed entirely in Python, freely available and useable in an interactive web application. In addition, CardIAP can be used as a standalone Python library and freely installed via PIP, making it easy to integrate into biomedical imaging pipelines. The images that can be generated in the study of the heart have the particularity of requiring both spatial and temporal analysis. CardIAP aims to open the field of cardiomyocytes and intact hearts image processing. The improvement in the extraction of information from the images will allow optimizing the usage of resources and animals. With CardIAP, users can run the analysis to both, the complete image, and portions of it in an easy way, and replicate it on a series of images. This analysis provides users with information on the spatial and temporal changes in calcium releases and characterizes them. The web application also allows users to extract calcium dynamics data in downloadable tables, simplifying the calculation of alternation and discordance indices and their classification. CardIAP aims to provide a tool that could assist biomedical researchers in studying the underlying mechanisms of anomalous calcium release phenomena.

2.
Acta Physiol (Oxf) ; 238(2): e13969, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36971744

RESUMO

AIM: Cardiac alternans is a dynamical phenomenon linked to the genesis of severe arrhythmias and sudden cardiac death. It has been proposed that alternans is caused by alterations in Ca2+ handling by the sarcoplasmic reticulum (SR), in both the SR Ca2+ uptake and release processes. The hypertrophic myocardium is particularly prone to alternans, but the precise mechanisms underlying its increased vulnerability are not known. METHODS: Mechanical alternans (intact hearts) and Ca2+ alternans (cardiac myocytes) were studied in spontaneously hypertensive rats (SHR) during the first year of age after the onset of hypertension and compared with age-matched normotensive rats. Subcellular Ca2+ alternans, T-tubule organization, SR Ca2+ uptake, and Ca2+ release refractoriness were measured. RESULTS: The increased susceptibility of SHR to high-frequency-induced mechanical and Ca2+ alternans appeared when the hypertrophy developed, associated with an adverse remodeling of the T-tubule network (6 mo). At the subcellular level, Ca2+ discordant alternans was also observed. From 6 mo of age, SHR myocytes showed a prolongation of Ca2+ release refractoriness without alterations in the capacity of SR Ca2+ removal, measured by the frequency-dependent acceleration of relaxation. Sensitizing SR Ca2+ release channels (RyR2) by a low dose of caffeine or by an increase in extracellular Ca2+ concentration, shortened refractoriness of SR Ca2+ release, and reduced alternans in SHR hearts. CONCLUSIONS: The tuning of SR Ca2+ release refractoriness is a crucial target to prevent cardiac alternans in a hypertrophic myocardium with an adverse T-tubule remodeling.


Assuntos
Hipertensão , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Miocárdio/metabolismo , Arritmias Cardíacas , Hipertensão/metabolismo , Ratos Endogâmicos SHR , Retículo Sarcoplasmático/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
J Am Heart Assoc ; 10(14): e018833, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34219467

RESUMO

Background Istaroxime is an inhibitor of Na+/K+ ATPase with proven efficacy to increase cardiac contractility and to accelerate relaxation attributable to a relief in phospholamban-dependent inhibition of the sarcoplasmic reticulum Ca2+ ATPase. We have previously shown that pharmacologic Na+/K+ ATPase inhibition promotes calcium/calmodulin-dependent kinase II activation, which mediates both cardiomyocyte death and arrhythmias. Here, we aim to compare the cardiotoxic effects promoted by classic pharmacologic Na+/K+ ATPase inhibition versus istaroxime. Methods and Results Ventricular cardiomyocytes were treated with ouabain or istaroxime at previously tested equi-inotropic concentrations to compare their impact on cell viability, apoptosis, and calcium/calmodulin-dependent kinase II activation. In contrast to ouabain, istaroxime neither promoted calcium/calmodulin-dependent kinase II activation nor cardiomyocyte death. In addition, we explored the differential behavior promoted by ouabain and istaroxime on spontaneous diastolic Ca2+ release. In rat cardiomyocytes, istaroxime did not significantly increase Ca2+ spark and wave frequency but increased the proportion of aborted Ca2+ waves. Further insight was provided by studying cardiomyocytes from mice that do not express phospholamban. In this model, the lower Ca2+ wave incidence observed with istaroxime remains present, suggesting that istaroxime-dependent relief on phospholamban-dependent sarcoplasmic reticulum Ca2+ ATPase 2A inhibition is not the unique mechanism underlying the low arrhythmogenic profile of this drug. Conclusions Our results indicate that, different from ouabain, istaroxime can reach a significant inotropic effect without leading to calcium/calmodulin-dependent kinase II-dependent cardiomyocyte death. Additionally, we provide novel insights regarding the low arrhythmogenic impact of istaroxime on cardiac Ca2+ handling.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Cálcio/metabolismo , Etiocolanolona/análogos & derivados , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cardiotoxicidade , Etiocolanolona/farmacologia , Masculino , Camundongos , Ouabaína/farmacologia , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/efeitos dos fármacos
4.
Basic Res Cardiol ; 113(1): 7, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29273902

RESUMO

In different pathological situations, cardiac cells undergo hyperosmotic stress (HS) and cell shrinkage. This change in cellular volume has been associated with contractile dysfunction and cell death. Given that nitric oxide (NO) is a well-recognized modulator of cardiac contractility and cell survival, we evaluated whether HS increases NO production and its impact on the negative inotropic effect observed during this type of stress. Superfusing cardiac myocytes with a hypertonic solution (HS: 440 mOsm) decreased cell volume and increased NO-sensitive DAF-FM fluorescence compared with myocytes superfused with an isotonic solution (IS: 309 mOsm). When cells were exposed to HS in addition to different inhibitors: L-NAME (NO synthase inhibitor), nitroguanidine (nNOS inhibitor), and Wortmannin (eNOS inhibitor) cell shrinkage occurred in the absence of NO release, suggesting that HS activates nNOS and eNOS. Consistently, western blot analysis demonstrated that maintaining cardiac myocytes in HS promotes phosphorylation and thus, activation of nNOS and eNOS compared to myocytes maintained in IS. HS-induced nNOS and eNOS activation and NO production were also prevented by AMPK inhibition with Dorsomorphin (DORSO). In addition, the HS-induced negative inotropic effect was exacerbated in the presence of either L-NAME, DORSO, ODQ (guanylate cyclase inhibitor), or KT5823 (PKG inhibitor), suggesting that NO provides contractile support via a cGMP/PKG-dependent mechanism. Our findings suggest a novel mechanism of AMPK-dependent NO release in cardiac myocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hyperosmotic stress.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tamanho Celular , Cardiopatias/enzimologia , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Óxido Nítrico/metabolismo , Pressão Osmótica , Adaptação Fisiológica , Animais , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Ativação Enzimática , Guanilato Ciclase/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Masculino , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Ratos Wistar , Transdução de Sinais
5.
Cardiovasc Res ; 104(3): 456-66, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25344365

RESUMO

AIMS: Cardiomyocyte swelling occurs in multiple pathological situations and has been associated with contractile dysfunction, cell death, and enhanced propensity to arrhythmias. We investigate whether hypotonic swelling promotes nitric oxide (NO) release in cardiomyocytes, and whether it impacts on swelling-induced contractile dysfunction. METHODS AND RESULTS: Superfusing rat cardiomyocytes with a hypotonic solution (HS; 217 mOsm), increased cell volume, reduced myocyte contraction and Ca(2+) transient, and increased NO-sensitive 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) fluorescence. When cells were exposed to HS + 2.5 mM of the NO synthase inhibitor l-NAME, cell swelling occurred in the absence of NO release. Swelling-induced NO release was also prevented by the nitric oxide synthase 1 (NOS1) inhibitor, nitroguanidine, and significantly reduced in NOS1 knockout mice. Additionally, colchicine (inhibitor of microtubule polymerization) prevented the increase in DAF-FM fluorescence induced by HS, indicating that microtubule integrity is necessary for swelling-induced NO release. The swelling-induced negative inotropic effect was exacerbated in the presence of either l-NAME, nitroguandine, the guanylate cyclase inhibitor, ODQ, or the PKG inhibitor, KT5823, suggesting that NOS1-derived NO provides contractile support via a cGMP/PKG-dependent mechanism. Indeed, ODQ reduced Ca(2+) wave velocity and both ODQ and KT5823 reduced the HS-induced increment in ryanodine receptor (RyR2, Ser2808) phosphorylation, suggesting that in this context, cGMP/PKG may contribute to preserve contractile function by enhancing sarcoplasmic reticulum Ca(2+) release. CONCLUSIONS: Our findings suggest a novel mechanism for NO release in cardiomyocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hypotonic swelling.


Assuntos
Citoesqueleto/fisiologia , Miócitos Cardíacos/fisiologia , Óxido Nítrico/metabolismo , Osmorregulação , Animais , GMP Cíclico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Contração Miocárdica , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos Wistar
6.
Heart Lung Circ ; 23(12): 1118-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25201479

RESUMO

Cardiotonic glycosides or digitalis are positive inotropes used in clinical practice for the treatment of heart failure, which also exist as endogenous ligands of the Na(+)/K(+) ATPase. An increase in the intracellular Ca2+ content mediates their positive inotropic effect, but has also been proposed as a trigger of life-threatening arrhythmias. Although the mechanisms involved in the positive inotropic effect of these compounds have been extensively studied, those underlying their arrhythmogenic action remain ill defined. Recent evidence has placed posttranslational modifications of the ryanodine receptor (RyR2), leading to arrhythmogenic Ca2+ release, in the centre of the storm. In this review we will examine, in depth, the mechanisms that generate the arrhythmogenic substrate, focussing on the role played by the RyR2 and how its CaMKII-dependent regulation may shift the balance from an inotropic to an arrhythmogenic Ca2+ release. Finally, we will provide evidence suggesting that stabilising RyR2 function could result in a potential new strategy to prevent cardiotonic glycoside-induced arrhythmias that could lead to a safer and more extensive use of these compounds.


Assuntos
Antiarrítmicos/efeitos adversos , Arritmias Cardíacas , Sinalização do Cálcio/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glicosídeos Digitálicos/efeitos adversos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Cálcio/metabolismo , Glicosídeos Digitálicos/farmacologia , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA