Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39195522

RESUMO

Common wheat (Triticum aestivum L.) is one of the most valuable cereal crops worldwide. This study examined leaf extracts of 30 accessions of T. aestivum and its subspecies using 48 h maceration with methanol by GC-MS and GCxGC-MS. The plants were grown from seeds of the wheat genetics collection of the Wheat Genetics Sector of the Institute of Cytology and Genetics, SB RAS. The analysis revealed 263 components of epicuticular waxes, including linear and branched alkanes, aliphatic alcohols, aldehydes, ketones, ß-diketones, carboxylic acids and their derivatives, mono- and diterpenes, phytosterols, and tocopherols. Hierarchical cluster analysis and principal component analysis were used to identify and visualize the differences between the leaf extracts of different wheat cultivars. Three clusters were identified, with the leading components being (1) octacosan-1-ol, (2) esters of saturated and unsaturated alcohols, and (3) fatty acid alkylamides, which were found for the first time in plant extracts. The results highlight the importance of metabolic studies in understanding the adaptive mechanisms and increasing wheat resistance to stress factors. These are crucial for breeding new-generation cultivars with improved traits.

2.
Plants (Basel) ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891261

RESUMO

Wheat heading time is primarily governed by two loci: VRN-1 (response to vernalization) and PPD-1 (response to photoperiod). Five sets of near-isogenic lines (NILs) were studied with the aim of investigating the effect of the aforementioned genes on wheat vegetative period duration and 14 yield-related traits. Every NIL was sown in the hydroponic greenhouse of the Institute of Cytology and Genetics, SB RAS. To assess their allelic composition at the VRN-1 and PPD-1 loci, molecular markers were used. It was shown that HT in plants with the Vrn-A1vrn-B1vrn-D1 genotype was reduced by 29 and 21 days (p < 0.001) in comparison to HT in plants with the vrn-A1Vrn-B1vrn-D1 and the vrn-A1vrn-B1Vrn-D1 genotypes, respectively. In our study, we noticed a decrease in spike length as well as spikelet number per spike parameter for some NIL carriers of the Vrn-A1a allele in comparison to carriers of the Vrn-B1 allele. PCA revealed three first principal components (PC), together explaining more than 70% of the data variance. Among the studied genetic traits, the Vrn-A1a and Ppd-D1a alleles showed significant correlations with PCs. Regarding genetic components, significant correlations were calculated between PC3 and Ppd-B1a (-0.26, p < 0.05) and Vrn-B1 (0.57, p < 0.05) alleles. Thus, the presence of the Vrn-A1a allele affects heading time, while Ppd-D1a is associated with plant height reduction.

3.
Front Plant Sci ; 14: 1336192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283969

RESUMO

Introduction: Pubescence is an important phenotypic trait observed in both vegetative and generative plant organs. Pubescent plants demonstrate increased resistance to various environmental stresses such as drought, low temperatures, and pests. It serves as a significant morphological marker and aids in selecting stress-resistant cultivars, particularly in wheat. In wheat, pubescence is visible on leaves, leaf sheath, glumes and nodes. Regarding glumes, the presence of pubescence plays a pivotal role in its classification. It supplements other spike characteristics, aiding in distinguishing between different varieties within the wheat species. The determination of pubescence typically involves visual analysis by an expert. However, methods without the use of binocular loupe tend to be subjective, while employing additional equipment is labor-intensive. This paper proposes an integrated approach to determine glume pubescence presence in spike images captured under laboratory conditions using a digital camera and convolutional neural networks. Methods: Initially, image segmentation is conducted to extract the contour of the spike body, followed by cropping of the spike images to an equal size. These images are then classified based on glume pubescence (pubescent/glabrous) using various convolutional neural network architectures (Resnet-18, EfficientNet-B0, and EfficientNet-B1). The networks were trained and tested on a dataset comprising 9,719 spike images. Results: For segmentation, the U-Net model with EfficientNet-B1 encoder was chosen, achieving the segmentation accuracy IoU = 0.947 for the spike body and 0.777 for awns. The classification model for glume pubescence with the highest performance utilized the EfficientNet-B1 architecture. On the test sample, the model exhibited prediction accuracy parameters of F1 = 0.85 and AUC = 0.96, while on the holdout sample it showed F1 = 0.84 and AUC = 0.89. Additionally, the study investigated the relationship between image scale, artificial distortions, and model prediction performance, revealing that higher magnification and smaller distortions yielded a more accurate prediction of glume pubescence.

4.
Plants (Basel) ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276632

RESUMO

Gibberellin-insensitive reduced height genes are widely spread in modern wheat varieties, making them resistant to lodging under conditions of intensive farming. However, the limited diversity of these genes present in wheat germplasm can limit the adaptability of newly created cultivars to the changing climate. The diversity of the gibberellin signaling pathway genes involved in plant height control- Reduced height 1 (Rht-D1), Gibberellin-insensitive dwarf 1 (Gid1­D) and Gibberellin-insensitive dwarf 2 (Gid2-D)-was studied in the diploid wild goatgrass Aegilops tauschii Coss., one of the ancestral species of the bread wheat (Triticum aestivum L.) and the donor of its D subgenome, using high-throughput sequencing. The examination of 24 Ae. tauschii accessions of different geographical origins revealed a large number of new alleles (haplotypes) not found in bread wheat varieties. Some of the detected polymorphisms lead to changes in the amino acid sequence of proteins. Four isoforms (amino acid sequence variants) were found for the RHT-D1 protein, and two isoforms-for the GID1 and GID2 proteins, each. An analysis of the co-occurrence frequencies of various isoforms of the three proteins showed that their combinations were not random in Ae. tauschii, which may indicate the functional significance of their differences. New alleles of the Rht-D1, Gid1-D, and Gid2-D genes are promising for introgression into bread wheat and studying their effect on plant height and adaptability.

5.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167455

RESUMO

Down-regulator associated protein, DrAp1, acts as a negative cofactor (NC2α) in a transcription repressor complex together with another subunit, down-regulator Dr1 (NC2ß). In binding to promotors and regulating the initiation of transcription of various genes, DrAp1 plays a key role in plant transition to flowering and ultimately in seed production. TaDrAp1 and TaDrAp2 genes were identified, and their expression and genetic polymorphism were studied using bioinformatics, qPCR analyses, a 40K Single nucleotide polymorphism (SNP) microarray, and Amplifluor-like SNP genotyping in cultivars of bread wheat (Triticum aestivum L.) and breeding lines developed from a cross between spelt (T. spelta L.) and bread wheat. TaDrAp1 was highly expressed under non-stressed conditions, and at flowering, TaDrAp1 expression was negatively correlated with yield capacity. TaDrAp2 showed a consistently low level of mRNA production. Drought caused changes in the expression of both TaDrAp1 and TaDrAp2 genes in opposite directions, effectively increasing expression in lower yielding cultivars. The microarray 40K SNP assay and Amplifluor-like SNP marker, revealed clear scores and allele discriminations for TaDrAp1 and TaDrAp2 and TaRht-B1 genes. Alleles of two particular homeologs, TaDrAp1-B4 and TaDrAp2-B1, co-segregated with grain yield in nine selected breeding lines. This indicated an important regulatory role for both TaDrAp1 and TaDrAp2 genes in plant growth, ontogenesis, and drought tolerance in bread and spelt wheat.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética , Triticum/genética , Alelos , Secas , Genes de Plantas/genética , Fosfoproteínas/metabolismo , Melhoramento Vegetal/métodos , Desenvolvimento Vegetal/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sementes , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo
6.
BMC Plant Biol ; 20(Suppl 1): 310, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050874

RESUMO

BACKGROUND: Threshability, rachis fragility and spike shape are critical traits for the domestication and evolution of wheat, determining the crop yield and efficiency of the harvest. Spelt factor gene Q controls a wide range of domestication-related traits in polyploid wheats, including those mentioned above. The main goal of the present study was to characterise the Q gene for uninvestigated accessions of wheats, including four endemics, and Aegilops accessions, and to analyze the species evolution based on differences in Q gene sequences. RESULTS: We have studied the spike morphology for 15 accessions of wheat species, including four endemics, namely Triticum macha, T. tibetanum, T. aestivum ssp. petropavlovskyi and T. spelta ssp. yunnanense, and 24 Aegilops accessions, which are donors of B and D genomes for polyploid wheat. The Q-5A, q-5D and q-5S genes were investigated, and a novel allele of the Q-5A gene was found in accessions of T. tibetanum (KU510 and KU515). This allele was similar to the Q allele of T. aestivum cv. Chinese Spring but had an insertion 161 bp in length within exon 5. This insertion led to a frameshift and premature stop codon formation. Thus, the T. tibetanum have spelt spikes, which is probably determined by the gene Tg, rather than Q. We determined the variability within the q-5D genes among hexaploid wheat and their D genome donor Aegilops tauschii. Moreover, we studied the accessions C21-5129, KU-2074, and K-1100 of Ae. tauschii ssp. strangulata, which could be involved in the origin of hexaploid wheats. CONCLUSIONS: The variability and phylogenetic relationships of the Q gene sequences studied allowed us to clarify the relationships between species of the genus Triticum and to predict the donor of the D genome among the Ae. tauschii accessions. Ae. tauschii ssp. strangulata accessions C21-5129, KU-2074 and K-1100 are the most interesting among the analysed accessions, since their partial sequence of q-5D is identical to the q-5D of T. aestivum cv. Chinese Spring. This result indicates that the donor is Ae. tauschii ssp. strangulata but not Ae. tauschii ssp. tauschii. Our analysis allowed us to clarify the phylogenetic relationships in the genus Triticum.


Assuntos
Aegilops/genética , Genes de Plantas , Variação Genética , Triticum/genética , Aegilops/classificação , Alelos , Evolução Molecular , Filogenia , Poliploidia , Triticum/classificação
8.
PLoS One ; 15(4): e0231704, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298343

RESUMO

The low diversity of the D-subgenome of bread wheat requires the involvement of new alleles for breeding. In grasses, the allelic state of Growth Regulating Factor (GRF) gene is correlated with nitrogen uptake. In this study, we characterized the sequence of TaGRF-2D and assessed its diversity in bread wheat and goatgrass Aegilops tauschii (genome DD). In silico analysis was performed for reference sequence searching, primer pairs design and sequence assembly. The gene sequence was obtained using Illumina and Sanger sequencing. The complete sequences of TaGRF-2D were obtained for 18 varieties of wheat. The polymorphism in the presence/absence of two GCAGCC repeats in 5' UTR was revealed and the GRF-2D-SSR marker was developed. Our results showed that the alleles 5' UTR-250 and 5' UTR-238 were present in wheat varieties, 5' UTR-250 was presented in the majority of wheat varieties. In Ae. tauschii ssp. strangulata (likely donor of the D-subgenome of polyploid wheat), most accessions carried the 5' UTR-250 allele, whilst most Ae. tauschii ssp. tauschii have 5' UTR-244. The developed GRF-2D-SSR marker can be used to study the genetic diversity of wheat and Ae. tauschii.


Assuntos
Aegilops/genética , Genes de Plantas , Triticum/genética , Regiões 5' não Traduzidas , Alelos , Sequência de Bases , Cromossomos de Plantas , Proteínas de Plantas/genética , Polimorfismo Genético , Fatores de Transcrição/genética , Transcrição Gênica
9.
BMC Plant Biol ; 19(Suppl 1): 55, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30813900

RESUMO

BACKGROUND: Leaves of Poaceae have a unique morphological feature: they consist of a proximal sheath and a distal blade separated by a ligular region. The sheath provides structural support and protects young developing leaves, whereas the main function of the blade is photosynthesis. The auricles allow the blade to tilt back for optimal photosynthesis and determine the angle of a leaf, whereas the ligule protects the stem from the entry of water, microorganisms, and pests. Liguleless variants have an upright leaf blade that wraps around the culm. Research on liguleless mutants of maize and other cereals has led to identification of genes that are involved in leaf patterning and differentiation. RESULTS: We characterized an induced liguleless mutant (LM) of Aegilops tauschii Coss., a donor of genome D of bread wheat Triticum aestivum L.. The liguleless phenotype of LM is under dominant monogenic control (Lgt). To determine precise position of Lgt on the Ae. tauschii genetic map, highly saturated genetic maps were constructed containing 887 single-nucleotide polymorphism (SNP) markers derived via diversity arrays technology (DArT)seq. The Lgt gene was mapped to chromosome 5DS. Taking into account coordinates of the SNP markers, flanking Lgt, on the pseudomolecule 5D, a chromosomal region that contains this gene was determined, and a list of candidate genes was identified. Morphological features of the LM phenotype suggest that Lgt participates in the control of leaf development, mainly, in leaf proximal-distal patterning, and its dominant mutation causes abnormal ligular region but does not affect reproductive development. CONCLUSIONS: Here we report characterization of a liguleless Ae. tauschii mutant, whose phenotype is under control of a dominant mutation of Lgt. The dominant mode of inheritance of the liguleless trait in a Triticeae species is reported for the first time. The position of the Lgt locus on chromosome 5DS allowed us to identify a list of candidate genes. This list does not contain Ae. tauschii orthologs of any well-characterized cereal genes whose mutations cause liguleless phenotypes. Thus, the characterized Lgt mutant represents a new model for further investigation of plant leaf patterning and differentiation.


Assuntos
Aegilops/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Mutação/genética , Poaceae/genética , Triticum/genética , Zea mays/genética
10.
Front Genet ; 10: 63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800144

RESUMO

The general transcription repressor, TaDr1 gene, was identified during screening of a wheat SNP database using the Amplifluor-like SNP marker KATU-W62. Together with two genes described earlier, TaDr1A and TaDr1B, they represent a set of three homeologous genes in the wheat genome. Under drought, the total expression profiles of all three genes varied between different bread wheat cultivars. Plants of four high-yielding cultivars exposed to drought showed a 2.0-2.4-fold increase in TaDr1 expression compared to controls. Less strong, but significant 1.3-1.8-fold up-regulation of the TaDr1 transcript levels was observed in four low-yielding cultivars. TaVrn1 and TaFT1, which controls the transition to flowering, revealed similar profiles of expression as TaDr1. Expression levels of all three genes were in good correlation with grain yields of evaluated cultivars growing in the field under water-limited conditions. The results could indicate the involvement of all three genes in the same regulatory pathway, where the general transcription repressor TaDr1 may control expression of TaVrn1 and TaFT1 and, consequently, flowering time. The strength of these genes expression can lead to phenological changes that affect plant productivity and hence explain differences in the adaptation of the examined wheat cultivars to the dry environment of Northern and Central Kazakhstan. The Amplifluor-like SNP marker KATU-W62 used in this work can be applied to the identification of wheat cultivars differing in alleles at the TaDr1 locus and in screening hybrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA