Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37241306

RESUMO

Chamber protection is a promising and quickly developing method of vapor-phase protection of metals against atmospheric corrosion by inhibitors. It was shown that chamber treatment with 2-ethylhexanoic acid (EHA) efficiently inhibits the initiation of zinc corrosion. The optimum conditions (temperature and duration) of zinc treatment with vapors of this compound were determined. If these conditions are met, adsorption films of EHA with thicknesses up to 100 nm are formed on the metal surface. It was found that their protective properties increase during the first day as zinc is exposed to air after chamber treatment. The anticorrosive action of adsorption films is due both to the surface being shielded from the corrosive environment and to the inhibition of corrosion processes on the active surface of the metal. Corrosion inhibition was caused by the ability of EHA to convert zinc to the passive state and inhibit its local anionic depassivation.

2.
Dalton Trans ; 52(7): 2124-2134, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36722927

RESUMO

A series of 5,7-disubstituted 1,4-diazepinoporphyrazinato magnesium(II) and nickel(II) complexes, including two novel compounds, were obtained by metal-templated macrocyclization. A combination of X-ray diffraction, 1H NMR, UV-vis, and electrochemical analyses allowed us to study their tendency towards H-type dimerization and trace the influence of structural and solvation factors on dimer stability. Based on the physicochemical and theoretical DFT calculation data, it was found that the main binding forces between 6H-1,4-diazepinoporphyrazine decks in the dimers were efficient π-π donor-acceptor interactions induced by the interdeck C-H⋯N hydrogen bonds. Furthermore, the metal-ligand (Pz2- â†’ M2+) electronic interactions have a key influence on the π-π stacking of the porphyrazine cores. It was shown that the displacement of the metal ion out of the macrocycle plane induced by coordinating agents can trigger the dissociation of the dimer, since the resulting enhancement of the donor-acceptor electronic interaction between the metal ion and the π-system of the ligand leads to a subsequent weakening of the π-π stacking of the porphyrazine cores. The TD-DFT calculations predicted the non-degeneracy of the HOMO-1 → LUMO and HOMO → LUMO+1 transitions in the 6H-1,4-diazepinoporphyrazine H-dimers, which explains the Q-band splitting in their UV-vis spectra.

3.
Membranes (Basel) ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36557135

RESUMO

The hydrogen-bromate flow battery represents one of the promising variants for hybrid power sources. Its membrane-electrode assembly (MEA) combines a hydrogen gas diffusion anode and a porous flow-through cathode where bromate reduction takes place from its acidized aqueous solution: BrO3− + 6 H+ + 6 e− = Br− + 3 H2O (*). The process of electric current generation occurs on the basis of the overall reaction: 3 H2 + BrO3− = Br− + 3 H2O (**), which has been studied in previous publications. Until this work, it has been unknown whether this device is able to function as a rechargeable power source. This means that the bromide anion, Br−, should be electrooxidized into the bromate anion, BrO3−, in the course of the charging stage inside the same cell under strongly acidic conditions, while until now this process has only been carried out in neutral or alkaline solutions with specially designed anode materials. In this study, we have demonstrated that processes (*) and (**) can be performed in a cyclic manner, i.e., as a series of charge and discharge stages with the use of MEA: H2, Freidenberg H23C8 Pt-C/GP-IEM 103/Sigracet 39AA, HBr + H2SO4; square cross-section of 4 cm2 surface area, under an alternating galvanostatic mode at a current density of 75 mA/cm2. The coulombic, voltaic and energy efficiencies of the flow battery under a cyclic regime, as well as the absorption spectra of the catholyte, were measured during its operation. The total amount of Br-containing compounds penetrating through the membrane into the anode space was also determined.

4.
Materials (Basel) ; 15(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233967

RESUMO

Chamberprotection of metals from atmospheric corrosion is a variety of vapor-phase inhibition. It is based on the effect of adsorption films formed in the vapors of low-volatile corrosion inhibitors at elevated temperatures. The paper analyzes the specific features of the chamber protection of a magnesium alloy with chlorobenzotriazole. It has been found that the protective properties of surface films formed in hot vapors of this compound increase upon exposure of the metal to air. The processes of structuring of protective films that occur in this case have been studied by a set of corrosion, electrochemical and physical methods. It has been shown that chamber treatment of the alloy is accompanied by chlorobenzotriazole adsorption and uniform thickening of the surface oxide-hydroxide layer. In this case, the corrosion processes slow down by a factor of up to 10. Prolonged exposure of the samples in air after the chamber treatment results in additional oxidation of magnesium and hydroxylation of the oxide. However, the oxide-hydroxide layer does not grow on the entire surface, but as separate islets. Such a change in the structure of the surface films results in an additional 10-fold increase in the corrosion resistance of the magnesium alloy.

5.
Materials (Basel) ; 15(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208088

RESUMO

It has been shown by a set of corrosion, electrochemical and physical methods that a chamber corrosion inhibitor that consists of a mixture of octadecylamine (ODA) and benzotriazole (BTA) efficiently protects copper and brass from atmospheric corrosion and can be used for the temporary protection of metal items. The optimum temperatures of treatment with the ODA + BTA mixed inhibitor is 120 °C for brass and 100 °C for copper. One-hour treatment in ODA + BTA vapors at these temperatures results in the formation of nanosized adsorption films on the surface of these metals. These films stabilize the passive state and provide efficient temporary protection of metal items. The ODA + BTA inhibitor is superior to its components in terms of protective aftereffect. Our analysis of the mutual effect of BTA and ODA indicated that they show an antagonism of protective action on copper, but there is also a synergistic enhancement in the case of brass. Electrochemical impedance spectroscopy studies demonstrate that the inhibitors in question mainly act by using a blocking mechanism on copper and brass. Chamber treatment of the metals studied in vapors of the ODA + BTA mixture resulted in a noticeable hydrophobization of the copper surface and an insignificant effect on the brass surface. Chamber treatment of copper samples with artificially created polymodal roughness made it possible to obtain a superhydrophobic surface.

6.
Materials (Basel) ; 14(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885341

RESUMO

In this work, we used a combination of corrosion, electrochemical, and physical methods to determine the properties of nanoscale films obtained by treatment with octadecylamine (ODA), benzotriazole (BTA) vapors, and their mixtures at elevated temperatures. The mixture of ODA + BTA surpasses its components in protective aftereffect, but an analysis of their mutual effects shows that there is antagonism between them. Electrochemical impedance spectroscopy data indicate that the protection of steel by a mixture of ODA + BTA and its components is characterized by a mixed blocking activation mechanism. The processing of steel in hot vapors of the ODA + BTA mixture leads to hydrophobization of the surface and super-hydrophobization if a polymodal surface is created on the steel before processing in vapors.

7.
Dalton Trans ; 50(18): 6245-6255, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33876177

RESUMO

Reaction of (2,3,9,10,16,17,23,24-octabutylphthalocyaninato)lanthanide(iii) acetylacetonates (BuPcLn(acac), 1a-c, Ln = Lu (a), Eu (b), La (c)) with a tetrakis(5,7-bis(4-tert-butylphenyl)-6H-1,4-diazepino)[2,3-b,g,l,q]porphyrazine ligand (tBuPhDzPzH2, 2) produced sandwich compounds (tBuPhDzPz)Ln(BuPc) (3a-c), which represent the first heteroleptic double-deckers incorporating both Pc and DzPz decks. A combination of high-resolution mass spectrometry, UV-Vis/NIR, MCD, and 1H NMR spectroscopy, and square-wave voltammetry provided unambiguous characterization of target complexes 3 indicating that their spectral and electrochemical properties are generally intermediate with respect to their homoleptic relatives. Based on the data of solution-state 1H-1H NMR (COSY, NOESY) correlation spectroscopy supported by DFT calculations, a dimerization tendency of compounds 3 proportional to the Ln(iii) ion size was found. The spectroelectrochemical study of 3 and the corresponding homoleptic double-deckers revealed a pronounced tendency to aggregation of the one-electron oxidized forms of DzPz-containing double-decker complexes compared to homoleptic Pc2Ln compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA