Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 16: 1170313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138705

RESUMO

Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal ß-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders.

2.
Antioxidants (Basel) ; 12(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671029

RESUMO

Oxidative stress and inflammation are the key players in neuroinflammation, in which microglia dysfunction plays a central role. Previous studies suggest that argan oil attenuates oxidative stress, inflammation, and peroxisome dysfunction in mouse brains. In this study, we explored the effects of two major argan oil (AO) phytosterols, Schottenol (Schot) and Spinasterol (Spina), on oxidative stress, inflammation, and peroxisomal dysfunction in two murine microglial BV-2 cell lines, wild-ype (Wt) and Acyl-CoA oxidase 1 (Acox1)-deficient cells challenged with LPS treatment. Herein, we used an MTT test to reveal no cytotoxicity for both phytosterols with concentrations up to 5 µM. In the LPS-activated microglial cells, cotreatment with each of these phytosterols caused a significant decrease in intracellular ROS production and the NO level released in the culture medium. Additionally, Schot and Spina were able to attenuate the LPS-dependent strong induction of Il-1ß and Tnf-α mRNA levels, as well as the iNos gene and protein expression in both Wt and Acox1-/- microglial cells. On the other hand, LPS treatment impacted both the peroxisomal antioxidant capacity and the fatty acid oxidation pathway. However, both Schot and Spina treatments enhanced ACOX1 activity in the Wt BV-2 cells and normalized the catalase activity in both Wt and Acox1-/- microglial cells. These data suggest that Schot and Spina can protect cells from oxidative stress and inflammation and their harmful consequences for peroxisomal functions and the homeostasis of microglial cells. Collectively, our work provides a compelling argument for the protective mechanisms of two major argan oil phytosterols against LPS-induced brain neuroinflammation.

3.
Front Mol Neurosci ; 16: 1299314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164407

RESUMO

Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal ß-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal ß-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies.

4.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233157

RESUMO

Exposure to endotoxins (lipopolysaccharides, LPS) may lead to a potent inflammatory cytokine response and a severe impairment of metabolism, causing tissue injury. The protective effect provided by cactus seed oil (CSO), from Opuntia ficus-indica, was evaluated against LPS-induced inflammation, dysregulation of peroxisomal antioxidant, and ß-oxidation activities in the brain and the liver. In both tissues, a short-term LPS exposure increased the proinflammatory interleukine-1ß (Il-1ß), inducible Nitroxide synthase (iNos), and Interleukine-6 (Il-6). In the brain, CSO action reduced only LPS-induced iNos expression, while in the liver, CSO attenuated mainly the hepatic Il-1ß and Il-6. Regarding the peroxisomal antioxidative functions, CSO treatment (as Olive oil (OO) or Colza oil (CO) treatment) induced the hepatic peroxisomal Cat gene. Paradoxically, we showed that CSO, as well as OO or CO, treatment can timely induce catalase activity or prevent its induction by LPS, respectively, in both brain and liver tissues. On the other hand, CSO (as CO) pretreatment prevented the LPS-associated Acox1 gene and activity decreases in the liver. Collectively, CSO showed efficient neuroprotective and hepato-protective effects against LPS, by maintaining the brain peroxisomal antioxidant enzyme activities of catalase and glutathione peroxidase, and by restoring hepatic peroxisomal antioxidant and ß-oxidative capacities.


Assuntos
Opuntia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Camundongos , Azeite de Oliva/farmacologia , Opuntia/metabolismo
5.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455460

RESUMO

During sepsis, the imbalance between oxidative insult and body antioxidant response causes the dysfunction of organs, including the brain and liver. Exposing mice to bacterial lipopolysaccharides (LPS) results in a similar pathophysiological outcome. The protection offered by argan oil was studied against LPS-induced oxidative stress, dysregulation of peroxisomal antioxidants, and ß-oxidation activities in the brain and liver. In a short-term LPS treatment, lipid peroxidation (malonaldehyde assay) increased in the brain and liver with upregulations of proinflammatory tumor necrosis factor (Tnf)-α and anti-inflammatory interleukin (Il)-10 genes, especially in the liver. Although exposure to olive oil (OO), colza oil (CO), and argan oil (AO) prevented LPS-induced lipid peroxidation in the brain and liver, only AO exposure protected against liver inflammation. Remarkably, only exposure to AO prevented LPS-dependent glutathione (GSH) dysregulation in the brain and liver. Furthermore, exposure to AO increased more efficiently than OO and CO in both organs, peroxisomal antioxidant capacity via induction of catalase (Cat) gene, protein and activity expression levels, and superoxide dismutase (Sod1) mRNA and activity levels. Interestingly, LPS decreased protein levels of the peroxisomal fatty acid-ATP binding cassette (ABC) transporters, ABCD1 and ABCD2, and increased acyl-CoA oxidase 1 (ACOX1) protein expression. Moreover, these LPS effects were attenuated for ABCD1 and ACOX1 in the brain of mice pretreated with AO. Our data collectively highlight the protective effects of AO against early oxidative stress caused by LPS in the brain and liver and their reliance on the preservation of peroxisomal functions, including antioxidant and ß-oxidation activities, making AO a promising candidate for the prevention and management of sepsis.

6.
Int J Mol Sci ; 22(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198763

RESUMO

ATP-binding cassette (ABC) transporters constitute one of the largest superfamilies of conserved proteins from bacteria to mammals. In humans, three members of this family are expressed in the peroxisomal membrane and belong to the subfamily D: ABCD1 (ALDP), ABCD2 (ALDRP), and ABCD3 (PMP70). These half-transporters must dimerize to form a functional transporter, but they are thought to exist primarily as tetramers. They possess overlapping but specific substrate specificity, allowing the transport of various lipids into the peroxisomal matrix. The defects of ABCD1 and ABCD3 are responsible for two genetic disorders called X-linked adrenoleukodystrophy and congenital bile acid synthesis defect 5, respectively. In addition to their role in peroxisome metabolism, it has recently been proposed that peroxisomal ABC transporters participate in cell signaling and cell control, particularly in cancer. This review presents an overview of the knowledge on the structure, function, and mechanisms involving these proteins and their link to pathologies. We summarize the different in vitro and in vivo models existing across the species to study peroxisomal ABC transporters and the consequences of their defects. Finally, an overview of the known and possible interactome involving these proteins, which reveal putative and unexpected new functions, is shown and discussed.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília D de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Colestase/genética , Colestase/patologia , Ácidos Graxos/genética , Humanos , Peroxissomos/genética
7.
Adv Exp Med Biol ; 1299: 91-104, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33417210

RESUMO

Peroxisomopathies are rare diseases due to dysfunctions of the peroxisome in which this organelle is either absent or with impaired activities. These diseases, at the exception of type I hyperoxaluria and acatalasaemia, affect the central and peripheral nervous system. Due to the significant impact of peroxisomal abnormalities on the functioning of nerve cells, this has led to an interest in peroxisome in common neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. In these diseases, a role of the peroxisome is suspected on the basis of the fatty acid and phospholipid profile in the biological fluids and the brains of patients. It is also speculated that peroxisomal dysfunctions could contribute to oxidative stress and mitochondrial alterations which are recognized as major players in the development of neurodegenerative diseases. Based on clinical and in vitro studies, the data obtained support a potential role of peroxisome in Alzheimer's disease and multiple sclerosis.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Peroxissomos/metabolismo , Peroxissomos/patologia , Humanos , Estresse Oxidativo
8.
Int J Mol Sci ; 18(7)2017 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-28737695

RESUMO

The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85 Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Modelos Moleculares , Peroxissomos/química , Animais , Cristalografia por Raios X , Humanos , Camundongos , Domínios Proteicos , Estrutura Secundária de Proteína , Ratos
9.
Methods Mol Biol ; 1595: 257-265, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28409470

RESUMO

Microglial cells play important roles in neurodegenerative diseases including peroxisomal leukodystrophies. The BV-2 murine immortalized cells are widely used in the context of neurodegenerative researches. It is therefore important to establish the expression pattern of peroxisomal proteins by flow cytometry in these cells. So, the expression pattern of various peroxisomal transporters (Abcd1, Abcd2, Abcd3) contributing to peroxisomal ß-oxidation was evaluated on BV-2 cells by flow cytometry and complementary methods (fluorescence microscopy, and RT-qPCR). By flow cytometry a strong expression of peroxisomal proteins (Abcd1, Abcd2, Abcd3) was observed. These data were in agreement with those obtained by fluorescence microscopy (presence of numerous fluorescent dots in the cytoplasm characteristic of a peroxisomal staining pattern) and RT-qPCR (high levels of Abcd1, Abcd2, and Abcd3 mRNAs). Thus, the peroxisomal proteins (Abcd1, Abcd2, Abcd3) are expressed in BV-2 cells, and can be analyzed by flow cytometry.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Citometria de Fluxo , Microglia/metabolismo , Peroxissomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Clonagem Molecular , Expressão Gênica , Camundongos , Microscopia de Fluorescência
10.
J Biol Chem ; 292(17): 6965-6977, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28258215

RESUMO

ABCD1 and its homolog ABCD2 are peroxisomal ATP-binding cassette (ABC) half-transporters of fatty acyl-CoAs with both distinct and overlapping substrate specificities. Although it is established that ABC half-transporters have at least to dimerize to generate a functional unit, functional equivalents of tetramers (i.e. dimers of full-length transporters) have also been reported. However, oligomerization of peroxisomal ABCD transporters is incompletely understood but is of potential significance because more complex oligomerization might lead to differences in substrate specificity. In this work, we have characterized the quaternary structure of the ABCD1 and ABCD2 proteins in the peroxisomal membrane. Using various biochemical approaches, we clearly demonstrate that both transporters exist as both homo- and heterotetramers, with a predominance of homotetramers. In addition to tetramers, some larger molecular ABCD assemblies were also found but represented only a minor fraction. By using quantitative co-immunoprecipitation assays coupled with tandem mass spectrometry, we identified potential binding partners of ABCD2 involved in polyunsaturated fatty-acid metabolism. Interestingly, we identified calcium ATPases as ABCD2-binding partners, suggesting a role of ABCD2 in calcium signaling. In conclusion, we have shown here that ABCD1 and its homolog ABCD2 exist mainly as homotetramers in the peroxisomal membrane.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Peroxissomos/metabolismo , Subfamília D de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Trifosfato de Adenosina/metabolismo , Animais , Células COS , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Chlorocebus aethiops , Proteínas de Fluorescência Verde/metabolismo , Neoplasias Hepáticas/metabolismo , Espectrometria de Massas , Camundongos , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Quaternária de Proteína , Transporte Proteico , Ratos , Espectrometria de Massas em Tandem
11.
J Steroid Biochem Mol Biol ; 169: 29-38, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26921765

RESUMO

Mitochondrial dysfunctions and oxidative stress are involved in several non demyelinating or demyelinating neurodegenerative diseases. Some of them, including multiple sclerosis (MS), are associated with lipid peroxidation processes leading to increased levels of 7-ketocholesterol (7KC). So, the eventual protective effect of dimethylfumarate (DMF), which is used for the treatment of MS, was evaluated on 7KC-treated oligodendrocytes, which are myelin synthesizing cells. To this end, murine oligodendrocytes 158N were exposed to 7KC (25, 50µM) for 24h without or with DMF (1, 25, 50µM). The biological activities of DMF associated or not with 7KC were evaluated by phase contrast microscopy, crystal violet and MTT tests. The impact on transmembrane mitochondrial potential (ΔYm), O2- and H2O2 production, apoptosis and autophagy was measured by microscopical and flow cytometric methods by staining with DiOC6(3), dihydroethidine and dihydrorhodamine 123, Hoechst 33342, and by Western blotting with the use of specific antibodies raised against uncleaved and cleaved caspase-3 and PARP, and LC3-I/II. DMF attenuates the different effects of 7KC, namely: cell growth inhibition and/or loss of cell adhesion, decrease of ΔΨm, O2- and H2O2 overproduction, PARP and caspase-3 cleavage, nuclear condensation and fragmentation, and activation of LC3-I into LC3-II. The ability of DMF to attenuate 7KC-induced reactive oxygen species overproduction, apoptosis, and autophagy on oligodendrocytes reinforces the interest for this molecule for the treatment of MS or other demyelinating diseases.


Assuntos
Apoptose , Autofagia , Fumarato de Dimetilo/farmacologia , Cetocolesteróis/farmacologia , Oligodendroglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Núcleo Celular/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Citometria de Fluxo , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial , Camundongos , Microscopia de Contraste de Fase , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo
12.
J Biol Chem ; 289(35): 24511-20, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25043761

RESUMO

ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 display a distinct but overlapping substrate specificity, although much remains to be learned in this respect as well as in their capability to form functional heterodimers. Using a cell model expressing an ABCD2-EGFP fusion protein, we first demonstrated by proximity ligation assay and co-immunoprecipitation assay that ABCD1 interacts with ABCD2. Next, we tested in the pxa1/pxa2Δ yeast mutant the functionality of ABCD1/ABCD2 dimers by expressing chimeric proteins mimicking homo- or heterodimers. For further structure-function analysis of ABCD1/ABCD2 dimers, we expressed chimeric dimers fused to enhanced GFP in human skin fibroblasts of X-linked adrenoleukodystrophy patients. These cells are devoid of ABCD1 and accumulate very long-chain fatty acids (C26:0 and C26:1). We checked that the chimeric proteins were correctly expressed and targeted to the peroxisomes. Very long-chain fatty acid levels were partially restored in transfected X-linked adrenoleukodystrophy fibroblasts regardless of the chimeric construct used, thus demonstrating functionality of both homo- and heterodimers. Interestingly, the level of C24:6 n-3, the immediate precursor of docosahexaenoic acid, was decreased in cells expressing chimeric proteins containing at least one ABCD2 moiety. Our data demonstrate for the first time that both homo- and heterodimers of ABCD1 and ABCD2 are functionally active. Interestingly, the role of ABCD2 (in homo- and heterodimeric forms) in the metabolism of polyunsaturated fatty acids is clearly evidenced, and the chimeric dimers provide a novel tool to study substrate specificity of peroxisomal ATP-binding cassette transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Peroxissomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Dimerização , Humanos , Camundongos , Plasmídeos , Reação em Cadeia da Polimerase , Ratos , Relação Estrutura-Atividade
13.
Biochem Biophys Res Commun ; 446(3): 651-5, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24480443

RESUMO

The regulation of the ABCD2 gene is recognized as a possible therapeutic target for X-linked adrenoleukodystrophy, a rare neurodegenerative disease caused by mutations in the ABCD1 gene. Up-regulation of ABCD2 expression has indeed been demonstrated to compensate for ABCD1 deficiency, restoring peroxisomal ß-oxidation of very-long-chain fatty acids. Besides the known inducers of the ABCD2 gene (phenylbutyrate and histone deacetylase inhibitors, fibrates, dehydroepiandrosterone, thyroid hormone and thyromimetics), this review will focus on LXR antagonists and 22S-hydroxycholesterol, recently described as inducers of ABCD2 expression. Several LXR antagonists have been identified and their possible indication for neurodegenerative disorders will be discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores Nucleares Órfãos/antagonistas & inibidores , Subfamília D de Transportador de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/tratamento farmacológico , Humanos , Hidroxicolesteróis/metabolismo , Hidroxicolesteróis/farmacologia , Receptores X do Fígado , Terapia de Alvo Molecular/métodos , Receptores Nucleares Órfãos/genética
14.
Biochim Biophys Acta ; 1841(2): 259-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24239766

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a rare neurodegenerative disorder characterized by the accumulation of very-long-chain fatty acids resulting from a beta-oxidation defect. Oxidative stress and inflammation are also key components of the pathogenesis. X-ALD is caused by mutations in the ABCDI gene, which encodes for a peroxisomal half ABC transporter predicted to participate in the entry of VLCFA-CoA into the peroxisome, the unique site of their beta-oxidation. Two homologous peroxisomal ABC transporters, ABCD2 and ABCD3 have been proven to compensate for ABCD1 deficiency when overexpressed. Pharmacological induction of these target genes could therefore represent an alternative therapy for X-ALD patients. Since LXR activation was shown to repress ABCD2 expression, we investigated the effects of LXR antagonists in different cell lines. Cells were treated with GSK(17) (a LXR antagonist recently discovered from the GlaxoSmithKline compound collection), 22(S)-hydroxycholesterol (22S-HC, another LXR antagonist) and 22R-HC (an endogenous LXR agonist). We observed up-regulation of ABCD2,ABCD3 and CTNNB1 (the gene encoding for beta-catenin, which was recently demonstrated to induce ABCD2 expression) in human HepG2 hepatoma cells and in X-ALD skin fibroblasts treated with LXR antagonists. Interestingly, induction in X-ALD fibroblasts was concomitant with a decrease in oxidative stress. Rats treated with 22S-HC showed hepatic induction of the 3 genes of interest. In human, we show by multiple tissue expression array that expression of ABCD2 appears to be inversely correlated with NR1H3 (LXRalpha) expression. Altogether, antagonists of LXR that are currently developed in the context of dyslipidemia may find another indication with X-ALD.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Receptores Nucleares Órfãos/antagonistas & inibidores , Subfamília D de Transportador de Cassetes de Ligação de ATP , Adrenoleucodistrofia/metabolismo , Ácidos Graxos/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Hidroxicolesteróis/farmacologia , Receptores X do Fígado , Estresse Oxidativo
15.
Med Sci (Paris) ; 28(12): 1087-94, 2012 Dec.
Artigo em Francês | MEDLINE | ID: mdl-23290409

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a complex neurodegenerative disease associated with mutations in the ABCD1 gene, which encodes for a peroxisomal ABC transporter. Thanks to the efforts of the ELA foundation and to the recent successes of gene therapy published in Science in 2009, X-ALD is better known but still remains poorly understood. The exact role of ABCD1 and its homologs, as well as the exact link between the biochemical and metabolic peroxisomal defects and the clinical symptoms of the disease remain to be elucidated. This review summarizes the knowledge concerning the subfamily D of the ABC transporter family and concerning X-ALD, the most frequent peroxisomal disorder.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Adrenoleucodistrofia/etiologia , Peroxissomos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Humanos , Membranas Intracelulares/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Transtornos Peroxissômicos/genética , Transtornos Peroxissômicos/metabolismo , Peroxissomos/fisiologia
16.
J Biol Chem ; 286(10): 8075-8084, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21209459

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder caused by mutations in the ABCD1 gene, which encodes a peroxisomal member of the ATP-binding cassette (ABC) transporter subfamily D called ALDP. ALDP is supposed to function as a homodimer allowing the entry of CoA-esters of very-long chain fatty acids (VLCFA) into the peroxisome, the unique site of their ß-oxidation. ALDP deficiency can be corrected by overexpression of ALDRP, its closest homolog. However, the exact nature of the substrates transported by ALDRP and its relationships with ALDP still remain unclear. To gain insight into the function of ALDRP, we used cell models allowing the induction in a dose-dependent manner of a wild type or a mutated non-functional ALDRP-EGFP fusion protein. We explored the consequences of the changes of ALDRP expression levels on the fatty acid content (saturated, monounsaturated, and polyunsaturated fatty acids) in phospholipids as well as on the levels of ß-oxidation of 3 suspected substrates: C26:0, C24:0, and C22:6n-3 (DHA). We found an inverse correlation between the fatty acid content of saturated (C26:0, C24:0) and monounsaturated (C26:1, C24:1) VLCFA and the expression level of ALDRP. Interestingly, we obtained a transdominant-negative effect of the inactive ALDRP-EGFP on ALDP function. This effect is due to a physical interaction between ALDRP and ALDP that we evidenced by proximity ligation assays and coimmunoprecipitation. Finally, the ß-oxidation assays demonstrate a role of ALDRP in the metabolism of saturated VLCFA (redundant with that of ALDP) but also a specific involvement of ALDRP in the metabolism of DHA.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos Graxos/metabolismo , Peroxissomos/enzimologia , Subfamília D de Transportador de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Linhagem Celular Tumoral , Ácidos Graxos/genética , Oxirredução , Peroxissomos/genética , Ratos
17.
J Steroid Biochem Mol Biol ; 116(1-2): 37-43, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19406244

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 (ALD) gene. The ABCD2 gene, its closest homolog, has been shown to compensate for ABCD1 deficiency when overexpressed. We previously demonstrated that the ABCD2 promoter contains a functional thyroid hormone response element. Thyroid hormone (T3) through its receptor TRbeta can induce hepatic Abcd2 expression in rodents and transiently normalize the VLCFA level in fibroblasts of Abcd1 null mice. In a therapeutic perspective, the use of selective agonists of TRbeta should present the advantage to be devoid of side effects, at least concerning the cardiotoxicity associated to TRalpha activation. In this study, we compared the effects of T3 with those of two thyromimetics (GC-1 and CGS 23425) specific of TRbeta. Using a gene reporter assay, we demonstrated that the rat Abcd2 promoter responds to the thyromimetics in a dose-dependent way similar to what is observed with T3. We then investigated the effects of 2-, 4- and 10-day treatments on the expression of ABCD2 and its paralogs ABCD3 and ABCD4 in human cell lines by RT-qPCR. Both thyromimetics trigger up-regulation of ABCD2-4 genes in HepG2 cells and X-ALD fibroblasts. Interestingly, in X-ALD fibroblasts, while T3 is associated with a transient induction of ABCD2 and ABCD3, the treatments with thyromimetics allow the induction to be maintained until 10 days. Further in vivo experiments in Abcd1 null mice with these thyromimetics should confirm the therapeutic potentialities of these molecules.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Acetatos/farmacologia , Glioxilatos/farmacologia , Fenóis/farmacologia , Hormônios Tireóideos/farmacologia , Subfamília D de Transportador de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Animais , Células COS , Chlorocebus aethiops , Humanos , Ratos , Transfecção , Tri-Iodotironina/metabolismo , Tri-Iodotironina/farmacologia , Regulação para Cima
18.
Biochimie ; 90(10): 1602-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18585430

RESUMO

Peroxisomal ABC transporters encoded by the ABCD genes are thought to participate in the import of specific fatty acids in the peroxisomal matrix. ABCD1 deficiency is associated with X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder which is characterized by the accumulation of saturated very-long-chain fatty acids (VLCFA). ABCD2 (the closest homolog of ABCD1) and ABCD3 have been shown to have partial functional redundancy with ABCD1; only when overexpressed, they can compensate for VLCFA accumulation. Other lipids, for instance polyunsaturated fatty acids (PUFA), should be possible candidate substrates for the ABCD2 and ABCD3 gene products, ALDRP and PMP70 respectively. Moreover, PUFA, which are known regulators of gene expression, could therefore represent potent inducers of the ABCD genes. To test this hypothesis, littermates of n-3-deficient rats were subjected to an n-3-deficient diet or equilibrated diets containing ALA (alpha-linolenic acid, 18:3n-3) as unique source of n-3 fatty acids or ALA plus DHA (docosahexaenoic acid, 22:6n-3) at two different doses. We analyzed the expression of peroxisomal ABC transporters and of the peroxisomal acyl-CoA oxidase gene 1 (Acox1) in adrenals, brain and liver. Whatever the diet, we did not observe any difference in gene expression in adrenals and brain. However, the hepatic expression level of Abcd2 and Abcd3 genes was found to be significantly higher in the n-3-deficient rats than in the rats fed the ALA diet or the DHA supplemented diets. This was accompanied by important changes in hepatic fatty acid composition. In summary, the hepatic expression of Abcd2 and Abcd3 but not of Abcd1 and Abcd4 appears to be highly sensitive towards dietary PUFA. This difference could be linked to the substrate specificity of the peroxisomal ABC transporters and a specific involvement of Abcd2 and Abcd3 in PUFA metabolism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Gorduras Insaturadas na Dieta/farmacologia , Ácidos Graxos Insaturados/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Fígado/citologia , Fígado/metabolismo , Masculino , Oxirredução , PPAR alfa/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Biochem Biophys Res Commun ; 341(1): 150-7, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16412981

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder due to mutations in the ABCD1 (ALD) gene. ALDRP, the closest homolog of ALDP, has been shown to have partial functional redundancy with ALDP and, when overexpressed, can compensate for the loss-of-function of ALDP. In order to characterize the function of ALDRP and to understand the phenomenon of gene redundancy, we have developed a novel system that allows the controlled expression of the ALDRP-EGFP fusion protein (normal or non-functional mutated ALDRP) using the Tet-On system in H4IIEC3 rat hepatoma cells. The generated stable cell lines express negligible levels of endogenous ALDRP and doxycycline dosage-dependent levels of normal or mutated ALDRP. Importantly, the ALDRP-EGFP protein is targeted correctly to peroxisome and is functional. The obtained cell lines will be an indispensable tool in our further studies aimed at the resolution of the function of ALDRP to characterize its potential substrates in a natural context.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/metabolismo , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Subfamília D de Transportador de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Engenharia de Proteínas/métodos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transfecção/métodos
20.
J Cell Biol ; 169(1): 93-104, 2005 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-15809314

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a demyelinating disease due to mutations in the ABCD1 (ALD) gene, encoding a peroxisomal ATP-binding cassette transporter (ALDP). Overexpression of adrenoleukodystrophy-related protein, an ALDP homologue encoded by the ABCD2 (adrenoleukodystrophy-related) gene, can compensate for ALDP deficiency. 4-Phenylbutyrate (PBA) has been shown to induce both ABCD2 expression and peroxisome proliferation in human fibroblasts. We show that peroxisome proliferation with unusual shapes and clusters occurred in liver of PBA-treated rodents in a PPARalpha-independent way. PBA activated Abcd2 in cultured glial cells, making PBA a candidate drug for therapy of X-ALD. The Abcd2 induction observed was partially PPARalpha independent in hepatocytes and totally independent in fibroblasts. We demonstrate that a GC box and a CCAAT box of the Abcd2 promoter are the key elements of the PBA-dependent Abcd2 induction, histone deacetylase (HDAC)1 being recruited by the GC box. Thus, PBA is a nonclassical peroxisome proliferator inducing pleiotropic effects, including effects at the peroxisomal level mainly through HDAC inhibition.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Proliferadores de Peroxissomos/farmacologia , Peroxissomos/ultraestrutura , Fenilbutiratos/farmacologia , Regulação para Cima/efeitos dos fármacos , Subfamília D de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/patologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Fibroblastos , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Fígado/patologia , Neuroglia/metabolismo , Neuroglia/ultraestrutura , PPAR alfa/genética , PPAR alfa/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Regulação para Cima/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA