Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 546: 104-117, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38570062

RESUMO

The techniques of tissue clearing have been proposed and applied in anatomical and biomedical research since the 19th century. As we all know, the original study of the nervous system relied on serial ultrathin sections and stereoscopic techniques. The 3D visualization of the nervous system was established by software splicing and reconstruction. With the development of science and technology, microscope equipment had constantly been upgraded. Despite the great progress that has been made in this field, the workload is too complex, and it needs high technical requirements. Abundant mistakes due to manual sections were inescapable and structural integrity remained questionable. According to the classification of tissue transparency methods, we introduced the latest application of transparency methods in central and peripheral nerve research from optical imaging, molecular markers and data analysis. This review summarizes the application of transparent technology in neural pathways. We hope to provide some inspiration for the continuous optimization of tissue clearing methods.


Assuntos
Nervos Periféricos , Animais , Nervos Periféricos/anatomia & histologia , Humanos , Imageamento Tridimensional/métodos
2.
Analyst ; 146(16): 5008-5032, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34296232

RESUMO

Surface-enhanced Raman scattering (SERS) has become one of the most sensitive analytical techniques for identifying the chemical components, molecular structures, molecular conformations, and the interactions between molecules. However, great challenges still need to be addressed until it can be widely accepted by the absolute quantification of analytes. Recently, many efforts have been devoted to addressing these issues via various electromagnetic (EM), chemical (CM), and EM-CM hybrid coupling enhancement strategies. In comparison with uncoupled SERS devices, they offer key advantages in terms of sensitivity, reproducibility, uniformity, stability, controllability and reliability. This review provides an in-depth analysis of coupled SERS devices, including coupling enhancement mechanisms, materials and approaches. Finally, we also discuss the remaining bottlenecks and possible strategies for the development of coupling-enhanced SERS devices in the future.


Assuntos
Análise Espectral Raman , Reprodutibilidade dos Testes
3.
Adv Mater ; 33(18): e2006124, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33768653

RESUMO

The emergence of superconductivity in 2D materials has attracted much attention and there has been rapid development in recent years because of their fruitful physical properties, such as high transition temperature (Tc ), continuous phase transition, and enhanced parallel critical magnetic field (Bc ). Tremendous efforts have been devoted to exploring different physical parameters to figure out the mechanisms behind the unexpected superconductivity phenomena, including adjusting the thickness of samples, fabricating various heterostructures, tuning the carrier density by electric field and chemical doping, and so on. Here, different types of 2D superconductivity with their unique characteristics are introduced, including the conventional Bardeen-Cooper-Schrieffer superconductivity in ultrathin films, high-Tc superconductivity in Fe-based and Cu-based 2D superconductors, unconventional superconductivity in newly discovered twist-angle bilayer graphene, superconductivity with enhanced Bc , and topological superconductivity. A perspective toward this field is then proposed based on academic knowledge from the recently reported literature. The aim is to provide researchers with a clear and comprehensive understanding about the newly developed 2D superconductivity and promote the development of this field much further.

4.
Adv Mater ; 33(5): e2004469, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33325574

RESUMO

The emergence of 2D polarized materials, including ferromagnetic, ferrovalley, and ferroelectric materials, has demonstrated unique quantum behaviors at atomic scales. These polarization behaviors are tightly bonded to the new degrees of freedom (DOFs) for next generation information storage and processing, which have been dramatically developed in the past few years. Here, the basic 2D polarized materials system and related devices' application in spintronics, valleytronics, and electronics are reviewed. Specifically, the underlying physical mechanism accompanied with symmetry broken theory and the modulation process through heterostructure engineering are highlighted. These summarized works focusing on the 2D polarization would continue to enrich the cognition of 2D quantum system and promising practical applications.

5.
Adv Mater ; 32(46): e2005353, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33043512

RESUMO

Power consumption is one of the most challenging bottlenecks for complementary metal-oxide-semiconductor integration. Negative-capacitance field-effect transistors (NC-FETs) offer a promising platform to break the thermionic limit defined by the Boltzmann tyranny and architect energy-efficient devices. However, it is a great challenge to achieving ultralow-subthreshold-swing (SS) (10 mV dec-1 ) and small-hysteresis NC-FETs simultaneously at room temperature, which has only been reported using the hafnium zirconium oxide system. Here, based on a ferroelectric LiNbO3 thin film with great spontaneous polarization, an ultralow-SS NC-FET with small hysteresis is designed. The LiNbO3 NC-FET platform exhibits a record-low SS of 4.97 mV dec-1 with great repeatability due to the superior capacitance matching characteristic as evidenced by the negative differential resistance phenomenon. By modulating the structure and operating parameters (such as channel length (Lch ), drain-sourse bias (Vds ), and gate bias (Vg )) of devices, an optimized SS from ≈40 to ≈10 mV dec-1 and hysteresis from ≈900 to ≈60 mV are achieved simultaneously. The results provide a new potential method for future highly integrated electronic and optical integrated energy-efficient devices.

6.
Adv Mater ; 32(25): e2002237, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32406177

RESUMO

The ultrabroadband spectrum detection from ultraviolet (UV) to long-wavelength infrared (LWIR) is promising for diversified optoelectronic applications of imaging, sensing, and communication. However, the current LWIR-detecting devices suffer from low photoresponsivity, high cost, and cryogenic environment. Herein, a high-performance ultrabroadband photodetector is demonstrated with detecting range from UV to LWIR based on air-stable nonlayered ultrathin Fe3 O4 nanosheets synthesized via a space-confined chemical vapor deposition (CVD) method. Ultrahigh photoresponsivity (R) of 561.2 A W-1 , external quantum efficiency (EQE) of 6.6 × 103 %, and detectivity (D*) of 7.42 × 108 Jones are achieved at the wavelength of 10.6 µm. The multimechanism synergistic effect of photoconductive effect and bolometric effect demonstrates the high sensitivity for light with any light intensities. The outstanding device performance and complementary mixing photoresponse mechanisms open up new potential applications of nonlayered 2D materials for future infrared optoelectronic devices.

7.
Adv Mater ; 32(12): e1908242, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32077189

RESUMO

Ternary two-dimensional (2D) semiconductors with controllable wide bandgap, high ultraviolet (UV) absorption coefficient, and critical tuning freedom degree of stoichiometry variation have a great application prospect for UV detection. However, as-reported ternary 2D semiconductors often possess a bandgap below 3.0 eV, which must be further enlarged to achieve comprehensively improved UV, especially deep-UV (DUV), detection capacity. Herein, sub-one-unit-cell 2D monolayer BiOBr nanoflakes (≈0.57 nm) with a large size of 70 µm are synthesized for high-performance DUV detection due to the large bandgap of 3.69 eV. Phototransistors based on the 2D ultrathin BiOBr nanoflakes deliver remarkable DUV detection performance including ultrahigh photoresponsivity (Rλ , 12739.13 A W-1 ), ultrahigh external quantum efficiency (EQE, 6.46 × 106 %), and excellent detectivity (D*, 8.37 × 1012 Jones) at 245 nm with a gate voltage (Vg ) of 35 V attributed to the photogating effects. The ultrafast response (τrise = 102 µs) can be achieved by utilizing photoconduction effects at Vg of -40 V. The combination of photocurrent generation mechanisms for BiOBr-based phototransistors controlled by Vg can pave a way for designing novel 2D optoelectronic materials to achieve optimal device performance.

8.
ACS Nano ; 14(3): 3490-3499, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32101395

RESUMO

The aprotic lithium-oxygen (Li-O2) battery has triggered tremendous efforts for advanced energy storage due to the high energy density. However, realizing toroid-like Li2O2 deposition in low-donor-number (DN) solvents is still the intractable obstruction. Herein, a heterostructured NiS2/ZnIn2S4 is elaborately developed and investigated as a promising catalyst to regulate the Li2O2 deposition in low-DN solvents. The as-developed NiS2/ZnIn2S4 promotes interfacial electron transfer, regulates the adsorption energy of the reaction intermediates, and accelerates O-O bond cleavage, which are convincingly evidenced experimentally and theoretically. As a result, the toroid-like Li2O2 product is achieved in a Li-O2 battery with low-DN solvents via the solvation-mediated pathway, which demonstrates superb cyclability over 490 cycles and a high output capacity of 3682 mA h g-1. The interface engineering of heterostructure catalysts offers more possibilities for the realization of toroid-like Li2O2 in low-DN solvents, holding great promise in achieving practical applications of Li-O2 batteries as well as enlightening the material design in catalytic systems.

9.
Adv Mater ; 31(36): e1903580, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31339207

RESUMO

2D planar structures of nonlayered wide-bandgap semiconductors enable distinguished electronic properties, desirable short wavelength emission, and facile construction of 2D heterojunction without lattice match. However, the growth of ultrathin 2D nonlayered materials is limited by their strong covalent bonded nature. Herein, the synthesis of ultrathin 2D nonlayered CuBr nanosheets with a thickness of about 0.91 nm and an edge size of 45 µm via a controllable self-confined chemical vapor deposition method is described. The enhanced spin-triplet exciton (Zf , 2.98 eV) luminescence and polarization-enhanced second-harmonic generation based on the 2D CuBr flakes demonstrate the potential of short-wavelength luminescent applications. Solar-blind and self-driven ultraviolet (UV) photodetectors based on the as-synthesized 2D CuBr flakes exhibit a high photoresponsivity of 3.17 A W-1 , an external quantum efficiency of 1126%, and a detectivity (D*) of 1.4 × 1011 Jones, accompanied by a fast rise time of 32 ms and a decay time of 48 ms. The unique nonlayered structure and novel optical properties of the 2D CuBr flakes, together with their controllable growth, make them a highly promising candidate for future applications in short-wavelength light-emitting devices, nonlinear optical devices, and UV photodetectors.

10.
RSC Adv ; 8(52): 29499-29504, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35547288

RESUMO

We investigated the bipolar resistive switching (BRS) properties of Mn-doped NiO thin films by sol-gel spin-coating. As the Mn doping concentration increased, lattice constant, grain size and band gap were found to decrease simultaneously. Moreover, the electroforming voltages and threshold voltages were gradually reduced. It can be ascribed to the increase in the density of grain boundaries, and the defects caused by doping Mn and lower formation energy of Mn-O. They would be helpful for the formation of oxygen vacancies and conductive filaments. It is worth mentioning that excellent BRS behaviors can be obtained at a low Mn-doped concentration including enlarged ON/OFF ratio, good uniformity and stability. Compared with other samples, the 1% Mn-doped NiO showed the highest ON/OFF ratio (>106), stable endurance of >100 cycles and a retention time of >104 s. The mechanism should be determined by bulk properties rather than the dual-oxygen reservoir structure. These results indicate that appropriate Mn doping can be applied to improve the BRS characteristics of NiO thin films, and provide stable, low-power-consumption memory devices.

11.
Adv Sci (Weinh) ; 4(12): 1700231, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29270337

RESUMO

With the continuous exploration of 2D transition metal dichalcogenides (TMDs), novel high-performance devices based on the remarkable electronic and optoelectronic natures of 2D TMDs are increasingly emerging. As fresh blood of 2D TMD family, anisotropic MTe2 and ReX2 (M = Mo, W, and X = S, Se) have drawn increasing attention owing to their low-symmetry structures and charming properties of mechanics, electronics, and optoelectronics, which are suitable for the applications of field-effect transistors (FETs), photodetectors, thermoelectric and piezoelectric applications, especially catering to anisotropic devices. Herein, a comprehensive review is introduced, concentrating on their recent progresses and various applications in recent years. First, the crystalline structure and the origin of the strong anisotropy characterized by various techniques are discussed. Specifically, the preparation of these 2D materials is presented and various growth methods are summarized. Then, high-performance applications of these anisotropic TMDs, including FETs, photodetectors, and thermoelectric and piezoelectric applications are discussed. Finally, the conclusion and outlook of these applications are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA