Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 132: 108501, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566834

RESUMO

Tetrabromobisphenol A (TBBPA) is one of the most common and persistent organic pollutants found in the environment. When TBBPA is ingested by organisms through various pathways and stored in the body, it shows obvious harmful effects. Selenium (Se) works as an antioxidant in the body, allowing it to withstand the poisonous effects of dangerous substances. The effects and mechanisms of Se and TBBPA on carp neutrophil immune function, apoptosis, and necroptosis, however, are unknown. As a result, we created TBBPA exposure and Se antagonism models using carp neutrophils as study objects, and we investigated the expression of genes implicated in extracellular traps (NETs), cytokines, apoptosis, and necroptosis. The findings demonstrated that extracellular traps neutrophils in the TBBPA group displayed the inhibition of NETs, apoptosis, and necrosis, as well as an increase in Reactive oxygen species (ROS) levels and activation of the MAPK pathway. The expression of genes related to the mitochondrial apoptosis pathway (Bax, Cyt-c, Bcl-2 and Caspase-3) and necroptosis pathway (MLKL, RIPK1, RIPK3, Caspase-8 and FADD) were activated. The expression of inflammatory factors IL-1 and TNF-α were increased, and the expression of IL-2 and IFN-γ were decreased. But an appropriate concentration of Se can mitigate the effects of TBBPA. Our results suggest that Se can mitigate the inhibitory effect of TBBPA on NETs release by regulating apoptosis and necroptosis of carp neutrophil via ROS/MAPK pathways. These results provide a basis information for exploring the toxicity of TBBPA, and enrich the anti-toxicity mechanism of trace element Se in the body.


Assuntos
Carpas , Armadilhas Extracelulares , Selênio , Animais , Neutrófilos , Selênio/farmacologia , Selênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carpas/metabolismo , Necroptose , Apoptose
2.
Environ Sci Pollut Res Int ; 30(1): 1060-1071, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35908035

RESUMO

Chlorpyrifos (CPF), an organophosphorus pesticide, is detected commonly in environments, where it is thought to be highly toxic to non-target organisms. However, the mechanism of CYP450s pathway mediated by nuclear receptors on CPF-induced apoptosis and necroptosis at the cellular level and the effect of CPF on the cytotoxicity of the chicken hepatocarcinoma cell line (LMH) has also not been reported in detail. Therefore, this experiment aims to explore whether CPF can improve apoptosis and necroptosis in LMH cells by activating the nuclear receptors/CYP450s axis. LMH cells, the subject of this study, were exposed to 5 µg/mL, 10 µg/mL, and 15 µg/mL doses of CPF. With the increase of CPF concentration, the increase of nuclear receptor level led to the up-regulation of CYP450s activity. With the massive production of ROS, the expression of apoptotic pathway genes (Bax, Caspase9, and Caspase3) enhanced, while Bcl-2 expression dropped sharply. The expression of programmed necroptosis genes (RIPK1, RIPK3, and MLKL) heightened, and Caspase8 reduced considerably. In short, our data suggests that excessive activation of nuclear receptors and CYP450s induced by CPF promotes ROS production, which directs apoptosis and programmed necroptosis in LMH cells.


Assuntos
Clorpirifos , Praguicidas , Apoptose , Clorpirifos/farmacologia , Clorpirifos/toxicidade , Necroptose , Compostos Organofosforados , Praguicidas/farmacologia , Praguicidas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Animais , Galinhas , Sistema Enzimático do Citocromo P-450/metabolismo
3.
Environ Toxicol ; 37(10): 2483-2492, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35791677

RESUMO

Microplastics (MPs) generally refer to the plastic fragments or particles smaller than 5 mm in diameter, which are closely concerned due to their widespread presence in the environment. Recent studies have shown that MPs have a serious threat on the reproductive health of organisms. Pigs are often selected as the model animals because of their high similarity to human tissues and organs. However, there are no reports on the effects and mechanisms of MPs exposure on swine germ cells. In the present study, we established swine testis (ST) cell models exposed to 250, 500, and 1000 µg/ml polystyrene microplastics (PS-MPs, 1-10 µm), respectively. The findings revealed that PS-MPs reduced cell viability dose-dependently. Acridine orange/ethidium bromide staining and flow cytometry results indicated the occurrence of apoptosis and necrosis in ST cells under PS-MPs exposure, and the expression changes of relevant marker genes (B-cell lymphoma-2, Bcl-2 Associated X, Caspase-3, Caspase-9, Receptor-interacting protein kinase 1, Receptor-interacting protein kinase 3, Mixed lineage kinase domain-like, and Caspase-8) were clarified via quantitative real-time PCR and western blot. Further mechanistic studies found that PS-MPs treatment induced excessive intracellular reactive oxygen species (ROS) production, which promoted the phosphorylation of mitogen-activated protein kinase (MAPK) pathway-related genes (P38, c-Jun N-terminal kinase, extracellular regulated protein kinases) and activated the downstream gene hypoxia-inducible factor (HIF1α). In conclusion, our study suggests that PS-MPs treatment causes apoptosis and necroptosis in ST cells via ROS/MAPK/HIF1α signaling pathway.


Assuntos
Microplásticos , Poliestirenos , Animais , Apoptose , Humanos , Masculino , Microplásticos/toxicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Necroptose , Plásticos/farmacologia , Poliestirenos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Suínos , Testículo/metabolismo
4.
Environ Toxicol ; 37(9): 2281-2290, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35665993

RESUMO

Tetrabromobisphenol A (TBBPA) is a widely used industrial brominated flame retardant, which can endanger animal and human health, including cytotoxicity, endocrine disruption, reproductive toxicity and so on. Melatonin (MT) is a noteworthy free radical scavenger and an antioxidant to alleviate oxidative stress. To investigate the cytotoxic of TBBPA on swine testis cells (ST cells), as well as the antagonistic effect of MT, we established TBBPA exposure and MT antagonistic models, used flow cytometry and AO/EB staining methods to detect apoptosis and necroptosis, used DCFH-DA method to examine the content of reactive oxygen species (ROS) and investigated the expression of associated genes using RT-PCR and Western blot. According to our findings, TBBPA exposure induced cell death in ST cells. TBBPA increased ROS levels, thus increasing PTEN expression and decreasing PI3K and AKT expression. Apoptosis-related factors (Caspase-3, Bax, Cyt-c, and Caspase-9) and necroptosis-related factors (RIPK1, RIPK3, and MLKL) were considerably elevated, in addition to the reduced expression of BCL-2 and Caspase-8. We also found that MT inhibited apoptosis and necroptosis in TBBPA-induced ST cells and effectively resolved the abnormal expression of related signaling pathways. In summary, the above results indicate that MT alleviates the disorder of PTEN/PI3K/AKT signaling pathway via inhibiting ROS overproduction, thereby mitigating apoptosis and necroptosis caused by TBBPA. This research provides a theoretical basis for further understanding of the toxicity of TBBPA and the detoxification of MT against environmental toxics.


Assuntos
Melatonina , Necroptose , Bifenil Polibromatos , Animais , Apoptose , Masculino , Melatonina/farmacologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Bifenil Polibromatos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Suínos , Testículo/metabolismo
5.
Front Bioeng Biotechnol ; 9: 683796, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124027

RESUMO

Lignin from different biomasses possess biological antioxidation and antimicrobial activities, which depend on the number of functional groups and the molecular weight of lignin. In this work, organosolv fractionation was carried out to prepare the lignin fraction with a suitable structure to tailor excellent biological activities. Gel permeation chromatography (GPC) analysis showed that decreased molecular weight lignin fractions were obtained by sequentially organosolv fractionation with anhydrous acetone, 50% acetone and 37.5% hexanes. Nuclear magnetic resonance (NMR) results indicated that the lignin fractions with lower molecular weight had fewer substructures and a higher phenolic hydroxyl content, which was positively correlated with their antioxidation ability. Both of the original lignin and fractionated lignins possessed the ability to inhibit the growth of Gram-negative bacteria (Escherichia coli and Salmonella) and Gram-positive bacteria (Streptococcus and Staphylococcus aureus) by destroying the cell wall of bacteria in vitro, in which the lignin fraction with the lowest molecular weight and highest phenolic hydroxyl content (L3) showed the best performance. Besides, the L3 lignin showed the ability to ameliorate Escherichia coli-induced diarrhea damages of mice to improve the formation of intestinal contents in vivo. These results imply that a lignin fraction with a tailored structure from bamboo lignin can be used as a novel antimicrobial agent in the biomedical field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA