Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Genomics ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847971

RESUMO

BACKGROUND: RNA-binding proteins (RBPs) perform various biological functions in humans and are associated with several diseases, including cancer. Therefore, RBPs have emerged as novel therapeutic targets. Although recent investigations have shown that RBPs have crucial functions in breast cancer (BC), detailed research is underway to determine the RBPs that are closely related to cancers. OBJECTIVE: To provide an insight into estrogen receptor (ER) regulation by cold-inducible RNA binding protein (CIRBP) as a novel therapeutic target. RESULTS: By analyzing the genomic data, we identified a potential RBP in BC. We found that CIRBP is highly correlated with ER function and influences clinical outcomes, such as patient survival and endocrine therapy responsiveness. In addition, CIRBP influences the proliferation of BC cells by directly binding to ER-RNA. CONCLUSION: Our results suggest that CIRBP is a novel upstream regulator of ER and that the interplay between CIRBP and ER may be associated with the clinical relevance of BC.

2.
Pharmaceuticals (Basel) ; 15(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36355519

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disease that results from eczema, itching, disrupted barrier function and aberrant cutaneous immune responses. The aim of the present study was to assess the efficacy of kushenol F as an effective treatment for AD via the suppression of thymic stromal lymphopoietin (TSLP) production. The results of the present study demonstrated that the clinical symptoms of AD were less severe and there was reduced ear thickening and scratching behavior in kushenol F-treated Dermatophagoides farinae extract (DFE)/1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD mice. Histopathological analysis demonstrated that kushenol F decreased the DFE/DNCB-induced infiltration of eosinophil and mast cells and TSLP protein expression levels. Furthermore, kushenol F-treated mice exhibited significantly lower concentrations of serum histamine, IgE and IgG2a compared with the DFE/DNCB-induced control mice. Kushenol F also significantly decreased phosphorylated NF-κB and IKK levels and the mRNA expression levels of IL-1ß and IL-6 in cytokine combination-induced human keratinocytes. The results of the present study suggested that kushenol F may be a potential therapeutic candidate for the treatment of AD via reducing TSLP levels.

3.
Life (Basel) ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348749

RESUMO

High glucose-mediated tubular injury contributes to the development and progression of diabetic nephropathy through renal tubulointerstitial fibrosis. V-set immunoglobulin-domain-containing 4 (VSIG4), a B7 family-related protein, is a complement receptor. Although the role of epithelial-mesenchymal transition (EMT) has been reported in several diseases, little is known about its relationship with VSIG4 under diabetic conditions. This study aimed to investigate the role of VSIG4 in human tubule cells stimulated by high glucose (HG, 55 mM). HG upregulated both mRNA and protein levels of VSIG4 in proximal tubule cells (HK-2 cells) and Madin Darby Canine Kidney cells. These upregulations were accompanied by increased expression of mesenchymal markers such as fibronectin, N-cadherin, matrix metalloproteinase 9, and vimentin, and by decreased expression of the epithelial marker, E-cadherin. The siRNA-mediated inhibition of VSIG4 in HK-2 cells restored the dysregulation of EMT in cells. Interestingly, VSIG4 inhibition did not affect the expression of transforming growth factor (TGF)-ß, whereas inhibition of TGF-ß reduced VSIG4 expression, subsequently suppressing fibrosis markers. These findings suggest that VSIG4 plays an important role in mediating renal tubular EMT through the downstream action of HG-induced TGF-ß activation.

4.
Arch Dermatol Res ; 312(1): 59-67, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31602487

RESUMO

Acne is a chronic skin disease of the pilosebaceous unit resulting from Propionibacterium acnes (P. acnes), a commensal microorganism. Although numerous therapies are available for acne, there is still a need for the development of effective therapies. Erythroid differentiation regulator 1 (Erdr1) has been suggested to be beneficial during inflammatory skin diseases. In the current study, we first showed that Erdr1 expression level was lower in inflammatory acne skin compared to the normal skin, suggesting that Erdr1 was negatively regulated in acne skin. To evaluate the effect of Erdr1 further, Erdr1 was injected subcutaneously in the acne mouse model. Results revealed that the necrotic lesions by inflamed acne were dramatically decreased and collagen synthesis and fibroblasts activation were induced by Erdr1. In addition, Erdr1 reduced the infiltration of inflammatory cells in vivo and accelerated collagen production in P. acnes-treated human dermal fibroblasts through TGF-ß/Smad signaling. Taken together, Erdr1 enhanced wound healing through acceleration of collagen synthesis and activation of fibroblasts in acne skin, suggesting its potential use for acne improvement.


Assuntos
Acne Vulgar/patologia , Colágeno/biossíntese , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Propionibacterium acnes , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/farmacologia , Cicatrização/fisiologia , Acne Vulgar/microbiologia , Animais , Células Cultivadas , Feminino , Fibroblastos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Pelados , Pele/metabolismo , Proteínas Supressoras de Tumor/genética
5.
Sci Rep ; 8(1): 17536, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510197

RESUMO

The DNA damage-activated protein kinase Chk1 is known to undergo auto-phosphorylation, however the sites and functional significance of this modification remain poorly understood. We have identified two novel Chk1 auto-phosphorylation sites, threonines 378 and 382 (T378/382), located in a highly conserved motif within the C-terminal Kinase Associated 1 (KA1) domain. T378/382 occur within optimal consensus Chk1 phosphorylation motifs and substitution with phospho-mimetic aspartic acid residues results in a constitutively active mutant Chk1 kinase (Chk1-DD) that arrests cell cycle progression in G2 phase of the cell cycle in the absence of DNA damage. Remarkably, the mutant Chk1-DD protein is also subject to very rapid proteasomal degradation, with a half-life approximately one tenth that of wild-type Chk1. Consistent with this, T378/T382 auto-phosphorylation also accelerates the proteasomal degradation of constitutively active Chk1 KA1 domain structural mutants. T378/382 auto-phosphorylation and accelerated degradation of wild-type Chk1 occurs at low levels during unperturbed growth, but surprisingly, is not augmented in response to genotoxic stress. Taken together, these observations demonstrate that Chk1 T378/T382 auto-phosphorylation within the KA1 domain is linked to kinase activation and rapid proteasomal degradation, and suggest a non-canonical mechanism of regulation.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Motivos de Aminoácidos , Linhagem Celular Transformada , Quinase 1 do Ponto de Checagem/genética , Humanos , Mutação , Fosforilação , Complexo de Endopeptidases do Proteassoma/genética , Domínios Proteicos
6.
Toxicol In Vitro ; 46: 229-236, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28947240

RESUMO

ABT-263 (navitoclax), a Bcl-2 family protein inhibitor, was clinically tested as an anti-cancer agent. However, the clinical trials were limited given the occurrence of resistance to monotherapy in breast cancer cells. Our study investigates the mechanisms for overcoming navitoclax resistance by combining it with an mTOR inhibitor to indirectly target survivin. The apoptotic effects of navitoclax occurred in MDA-MB-231 breast cancer cells in a time- and dose-dependent fashion, but MCF-7 cells were resistant to navitoclax treatment. The expression of Bcl-2 family genes was not altered by navitoclax, but the expression of survivin, a member of the inhibitors of apoptosis proteins (IAP) family, was downregulated, which increased death signaling in MDA-MB-231 cells. In MCF-7 cells, a navitoclax-resistant cell line, combined treatment with navitoclax and everolimus synergistically reduced survivin expression and induced cell death. These data indicate that navitoclax induces cell death in MDA-MB-231 cells but not in MCF-7 cells. Decreased survivin expression in MDA-MB-231 cells may be a primary pathway for death signaling. Combined navitoclax and everolimus treatment induces cell death by reducing the stability of survivin in MCF-7 cells. Given that survivin-targeted therapy overcomes resistance to navitoclax, this strategy could be used to treat breast cancer patients.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/metabolismo , Sulfonamidas/farmacologia , Compostos de Anilina/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Quimioterapia Combinada , Everolimo/administração & dosagem , Everolimo/farmacologia , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Survivina , Serina-Treonina Quinases TOR/antagonistas & inibidores
7.
Toxicol Lett ; 258: 126-133, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27339904

RESUMO

Sulindac has anti-neoplastic properties against colorectal cancers; however, its use as a chemopreventive agent has been limited due to toxicity and efficacy concerns. Combinatorial treatment of colorectal cancers has been attempted to maximize anti-cancer efficacy with minimal side effects by administrating NSAIDs in combination with other inhibitory compounds or drugs such as l-ascorbic acid (vitamin C), which is known to exhibit cytotoxicity towards various cancer cells at high concentrations. In this study, we evaluated a combinatorial strategy utilizing sulindac and vitamin C. The death of HCT116 cells upon combination therapy occurred via a p53-mediated mechanism. The combination therapeutic resistance developed in isogenic p53 null HCT116 cells and siRNA-mediated p53 knockdown HCT116 cells, but the exogenous expression of p53 in p53 null isogenic cells resulted in the induction of cell death. In addition, we investigated an increased level of intracellular ROS (reactive oxygen species), which was preceded by p53 activation. The expression level of PUMA (p53-upregulated modulator of apoptosis), but not Bim, was significantly increased in HCT116 cells in response to the combination treatment. Taken together, our results demonstrate that combination therapy with sulindac and vitamin C could be a novel anti-cancer therapeutic strategy for p53 wild type colon cancers.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Neoplasias do Colo/tratamento farmacológico , Espécies Reativas de Oxigênio/agonistas , Sulindaco/farmacologia , Proteína Supressora de Tumor p53/agonistas , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/metabolismo , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma/dietoterapia , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Neoplasias do Colo/dietoterapia , Neoplasias do Colo/metabolismo , Terapia Combinada , Suplementos Nutricionais , Resistencia a Medicamentos Antineoplásicos , Interações Alimento-Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Concentração Osmolar , Oxidantes/metabolismo , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Free Radic Biol Med ; 95: 200-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27012422

RESUMO

Colon cancer patients with mutant KRAS are resistant to cetuximab, an antibody directed against the epidermal growth factor receptor, which is an effective clinical therapy for patients with wild-type KRAS. Numerous combinatorial therapies have been tested to overcome the resistance to cetuximab. However, no combinations have been found that can be used as effective therapeutic strategies. In this study, we demonstrate that L-ascorbic acid partners with cetuximab to induce killing effects, which are influenced by sodium-dependent vitamin C transporter 2 (SVCT-2) in human colon cancer cells with a mutant KRAS. L-Ascorbic acid treatment of human colon cancer cells that express a mutant KRAS differentially and synergistically induced cell death with cetuximab in a SVCT-2-dependent manner. The ectopic expression of SVCT-2 induced sensitivity to L-ascorbic acid treatment in human colon cancer cells that do not express SVCT-2, whereas the knockdown of endogenous SVCT-2 induced resistance to L-ascorbic acid treatment in SVCT-2-positive cells. Moreover, tumor regression via the administration of L-ascorbic acid and cetuximab in mice bearing tumor cell xenografts corresponded to SVCT-2 protein levels. Interestingly, cell death induced by the combination of L-ascorbic acid and cetuximab resulted in both apoptotic and necrotic cell death. These cell death mechanisms were related to a disruption of the ERK pathway and were represented by the impaired activation of RAFs and the activation of the ASK-1-p38 pathway. Taken together, these results suggest that resistance to cetuximab in human colon cancer patients with a mutant KRAS can be bypassed by L-ascorbic acid in an SVCT-2-dependent manner. Furthermore, SVCT-2 in mutant KRAS colon cancer may act as a potent marker for potentiating L-ascorbic acid co-treatment with cetuximab.


Assuntos
Ácido Ascórbico/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Transportadores de Sódio Acoplados à Vitamina C/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cetuximab/administração & dosagem , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Sci Rep ; 5: 10856, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26039276

RESUMO

The Chk1 protein kinase is activated in response to DNA damage through ATR-mediated phosphorylation at multiple serine-glutamine (SQ) residues within the C-terminal regulatory domain, however the molecular mechanism is not understood. Modelling indicates a high probability that this region of Chk1 contains a kinase-associated 1 (KA1) domain, a small, compact protein fold found in multiple protein kinases including SOS2, AMPK and MARK3. We introduced mutations into Chk1 designed to disrupt specific structural elements of the predicted KA1 domain. Remarkably, six of seven Chk1 KA1 mutants exhibit constitutive biological activity (Chk1-CA) in the absence of DNA damage, profoundly arresting cells in G2 phase of the cell cycle. Cell cycle arrest induced by selected Chk1-CA mutants depends on kinase catalytic activity, which is increased several-fold compared to wild-type, however phosphorylation of the key ATR regulatory site serine 345 (S345) is not required. Thus, mutations targeting the putative Chk1 KA1 domain confer constitutive biological activity by circumventing the need for ATR-mediated positive regulatory phosphorylation.


Assuntos
Dano ao DNA , Mutação , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sequência de Aminoácidos , Catálise , Proliferação de Células , Quinase 1 do Ponto de Checagem , Ativação Enzimática , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/química , Proteínas Son Of Sevenless/química , Proteínas Son Of Sevenless/genética , Proteínas Son Of Sevenless/metabolismo
10.
J Med Chem ; 56(8): 3414-8, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23527816

RESUMO

Molecular knowledge of pure antagonism and systematic SAR study offered a direction for structural optimization of DIMN to provide nicotinamides as a novel series of AR antagonists. Nicotinamides with extended linear scaffold bearing sterically bulky alkoxy groups on isoquinoline end were synthesized for H12 displacement. AR binding affinity and molecular basis of antiandrogenic effect establish the optimized derivatives, 7au and 7bb, as promising candidates of second generation AR antagonists for advanced prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Isoquinolinas/síntese química , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/efeitos dos fármacos , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Isoquinolinas/farmacologia , Masculino , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Relação Estrutura-Atividade
11.
AIDS ; 27(8): 1239-44, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23343910

RESUMO

OBJECTIVE: HIV-1 has been classified into four groups: M, N, O and P. The aim of this study was to revisit the cross-group neutralization using a highly diverse panel of primary isolates. DESIGN: The panel of viruses included nine HIV-1 group O primary isolates, one recombinant M/O primary isolate, one group N primary isolates, one group P primary isolate, two group M (subtype B) primary isolates and the HIV-1 group M adapted strain MN. METHODS: All the viruses were tested for neutralization in TZM-bl cells, using sera issued from patients infected by viruses of group M (n = 11), O (n = 12) and P (n = 1), and a panel of nine human monoclonal broadly neutralizing antibodies (HuMo bNAbs). RESULTS: Although the primary isolates displayed a wide spectrum of sensitivity to neutralization by the human sera, cross-group neutralization was clearly observed. In contrast, the bNAbs did not show any cross-group neutralization, except PG9 and PG16. Interestingly, the group N prototype strain YBF30 was highly sensitive to neutralization by PG9 (IC50: 0.28 µg/ml) and PG16 (IC50: < 0.12 µg/ml). The interaction between PG9 and key residues of YBF30 was confirmed by molecular modeling. CONCLUSION: The conservation of the PG9 and PG16 epitopes within groups M and N provides an argument for their relevance as components of a potentially efficient HIV vaccine immunogen.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , HIV-1/classificação , HIV-1/isolamento & purificação , Humanos , Modelos Teóricos , Testes de Neutralização/métodos
12.
J Biol Chem ; 287(36): 30769-80, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22798067

RESUMO

Hormonal therapies, mainly combinations of anti-androgens and androgen deprivation, have been the mainstay treatment for advanced prostate cancer because the androgen-androgen receptor (AR) system plays a pivotal role in the development and progression of prostate cancers. However, the emergence of androgen resistance, largely due to inefficient anti-hormone action, limits the therapeutic usefulness of these therapies. Here, we report that 6-(3,4-dihydro-1H-isoquinolin-2-yl)-N-(6-methylpyridin-2-yl)nicotinamide (DIMN) acts as a novel anti-androgenic compound that may be effective in the treatment of both androgen-dependent and androgen-independent prostate cancers. Through AR structure-based virtual screening using the FlexX docking model, fifty-four compounds were selected and further screened for AR antagonism via cell-based tests. One compound, DIMN, showed an antagonistic effect specific to AR with comparable potency to that of the classical AR antagonists, hydroxyflutamide and bicalutamide. Consistent with their anti-androgenic activity, DIMN inhibited the growth of androgen-dependent LNCaP prostate cancer cells. Interestingly, the compound also suppressed the growth of androgen-independent C4-2 and CWR22rv prostate cancer cells, which express a functional AR, but did not suppress the growth of the AR-negative prostate cancer cells PPC-1, DU145, and R3327-AT3.1. Taken together, the results suggest that the synthetic compound DIMN is a novel anti-androgen and strong candidate for useful therapeutic agent against early stage to advanced prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Isoquinolinas/química , Isoquinolinas/farmacologia , Modelos Moleculares , Niacinamida/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/síntese química , Animais , Células COS , Chlorocebus aethiops , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HeLa , Humanos , Isoquinolinas/síntese química , Masculino , Camundongos , Niacinamida/síntese química , Niacinamida/química , Niacinamida/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Relação Estrutura-Atividade
13.
Biochem Biophys Res Commun ; 422(2): 327-32, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22575506

RESUMO

Steroidogenesis in the testis is regulated by a negative feedback mechanism through the hypothalamus-pituitary-testis axis. Recent studies suggest that besides this long-loop regulation, testicular steroidogenesis is also locally regulated by androgen. However, the molecular mechanism behind this additional regulatory pathway has been poorly addressed. In the present study, we demonstrate that liganded androgen receptor (AR) suppresses the transcriptional activity of Nur77 on steroidogenic enzyme gene promoters, affecting testicular steroidogenesis. AR physically interacts and colocalizes with Nur77 in the nucleus in the presence of androgen. AR inhibits Nur77 transactivation by competing mainly with coactivators such as SRC-1 for Nur77 binding. These results suggest that androgen, through binding to AR, directly acts as a signal inhibiting the expression of steroidogenic enzyme genes in Leydig cells, eventually resulting in decreased testicular steroidogenesis. These findings strongly support the hypothesis that androgen acts locally to regulate testicular steroidogenesis, and may provide its action mechanism.


Assuntos
Androgênios/metabolismo , Regulação Enzimológica da Expressão Gênica , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Androgênicos/metabolismo , Testículo/enzimologia , Testosterona/biossíntese , Ativação Transcricional , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Intersticiais do Testículo/enzimologia , Masculino , Coativador 1 de Receptor Nuclear/metabolismo , Regiões Promotoras Genéticas , Testosterona/genética
14.
Biochem Biophys Res Commun ; 421(3): 532-7, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22521644

RESUMO

Estrogen receptors (ERs), which mediate estrogen actions, regulate cell growth and differentiation of a variety of normal tissues and hormone-responsive tumors through interaction with cellular factors. In this study, we show that thyroid transcription factor-2 (TTF-2) is expressed in mammary gland and acts as ERα co-repressor. TTF-2 inhibited ERα transactivation in a dose-dependent manner in MCF-7 breast cancer cells. In addition, TTF-2 directly bound to and formed a complex with ERα, colocalizing with ERα in the nucleus. In MCF-7/TTF-2 stable cell lines, TTF-2 repressed the expression of endogenous ERα target genes such as pS2 and cyclin D1 by interrupting ERα binding to target promoters and also significantly decreased cell proliferation. Taken together, these data suggest that TTF-2 may modulate the function of ERα as a corepressor and play a role in ER-dependent proliferation of mammary cells.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Ativação Transcricional , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Imunoprecipitação , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley
15.
Reprod Sci ; 18(5): 426-34, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21193804

RESUMO

Temporal gene expression profiling can provide valuable insight into mechanisms of differentiation and may be helpful in laying a foundation for characterization of the molecular aspects of development. Prostate development begins in fetal life and is complete at sexual maturity, and androgen stimulation is both necessary and sufficient for development and maturity of the prostate. In this study, we investigated gene expression profiles of rat prostate at 3 different developmental stages (2 weeks, 3.5 weeks, and 8 weeks), when serum testosterone levels are low, intermediate, and high. Through this analysis, we attempted to narrow down genes whose expression is affected by androgen increase during pubertal growth and maturation of the prostate.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Próstata/crescimento & desenvolvimento , Maturidade Sexual/fisiologia , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Masculino , Próstata/citologia , Ratos , Ratos Sprague-Dawley
16.
Cancer Sci ; 101(9): 2019-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20608937

RESUMO

Estrogen receptors play a key role in breast cancer development. One of the current therapeutic strategies for the treatment of estrogen receptor (ER)-α-positive breast cancers relies on the blockade of ERα transcriptional activity. In the present study, we characterized Hakai, originally characterized as an E-cadherin binding protein, as a strong blockade of ERα in breast cancer cells. We showed that Hakai inhibited the transcriptional activity of ERα by binding directly to ERα. The DNA-binding domain of ERα was found to be responsible for its interaction with Hakai. Hakai competed with ERα coactivators, such as steroid receptor coactivator-1 (SRC-1) and glucocoriticord receptor interacting protein-1 (GRIP-1), for the modulation of ERα transactivation, while its ubiquitin-ligase activity was not required. Further, overexpression of Hakai inhibited the proliferation and migration of breast cancer cells. Taken together, these results suggest that Hakai is a novel corepressor of ERα and may play a negative role in the development and progression of breast cancers.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Ligação Competitiva/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células COS , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Chlorocebus aethiops , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Imunoprecipitação , Coativador 2 de Receptor Nuclear/genética , Coativador 2 de Receptor Nuclear/metabolismo , Coativador 3 de Receptor Nuclear/genética , Coativador 3 de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Ligação Proteica/efeitos dos fármacos , Testosterona/farmacologia , Ativação Transcricional/efeitos dos fármacos , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética
17.
J Biol Chem ; 285(29): 22360-9, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20472563

RESUMO

ARR19 (androgen receptor corepressor-19 kDa), a leucine-rich protein whose expression is down-regulated by luteinizing hormone and cAMP, is differentially expressed during the development of Leydig cells and inhibits testicular steroidogenesis by reducing the expression of steroidogenic enzymes. However, the molecular events behind the suppression of testicular steroidogenesis are unknown. In the present study, we demonstrate that ARR19 inhibits the transactivation of orphan nuclear receptor Nur77, which is one of the major transcription factors that regulate the expression of steroidogenic enzyme genes in Leydig cells. ARR19 physically interacts with Nur77 and suppresses Nur77-induced promoter activity of steroidogenic enzyme genes including StAR, P450c17, and 3beta-HSD in Leydig cells. Transient transfection and chromatin immunoprecipitation assays revealed that ARR19-mediated reduced expression of steroidogenic enzyme genes was likely due to the interference of SRC-1 recruitment to Nur77 protein on the promoter of steroidogenic enzyme genes. These findings suggest that ARR19 acts as a novel coregulator of Nur77, in turn regulating Nur77-induced testicular steroidogenesis, and may play an important role in the development and function of testicular Leydig cells.


Assuntos
Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Proteínas Repressoras/metabolismo , Esteroides/biossíntese , Testículo/metabolismo , Ativação Transcricional/genética , Adenoviridae/metabolismo , Animais , Ligação Competitiva , Núcleo Celular/metabolismo , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Proteínas com Domínio MARVEL , Masculino , Proteínas de Membrana , Camundongos , Coativador 1 de Receptor Nuclear/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Repressoras/química , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Testículo/citologia
18.
Free Radic Biol Med ; 47(11): 1591-600, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19751824

RESUMO

Steroidogenesis decreases with aging in the testis, whereas the levels of reactive oxygen species (ROS) increase. In addition, ROS have been reported to inhibit testicular steroidogenesis. Here, we investigated the effects of ROS on the transcriptional activity of Nur77, one of the major transcription factors that regulate the expression of steroidogenic enzyme genes. ROS signaling inhibited Nur77 transactivation, which was diminished by either treatment with c-Jun N-terminal kinase (JNK) inhibitor or the expression of a dominant negative form of JNK. This suggests the involvement of JNK signaling, which elevates the expression of c-Jun as well as its phosphorylation in Leydig cells. In transient transfection assays, c-Jun suppressed Nur77 transactivation in a dose-dependent manner. Further studies using c-Jun mutants revealed that the protein level of c-Jun, but not phosphorylation itself, was important for the suppression of Nur77 transactivation. Nur77 directly interacted with c-Jun in vivo, which blocked the DNA binding activity of Nur77. Together, these results suggest that ROS signaling-mediated c-Jun upregulation suppresses the expression of steroidogenic enzyme genes by inhibiting Nur77 transactivation, resulting in the reduction of testicular steroidogenesis. These findings may provide a mechanistic explanation for the age-related decline in testicular steroid hormone production.


Assuntos
Células Intersticiais do Testículo/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Esteroides/biossíntese , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Antracenos/farmacologia , Linhagem Celular Tumoral , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/patologia , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/genética , Masculino , Camundongos , Mutação , Estresse Oxidativo , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Esteroide 17-alfa-Hidroxilase/biossíntese , Esteroide 17-alfa-Hidroxilase/genética , Ativação Transcricional/efeitos dos fármacos
19.
J Biol Chem ; 284(27): 18021-32, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19398553

RESUMO

ARR19 (androgen receptor corepressor of 19 kDa), which encodes for a leucine-rich protein, is expressed abundantly in the testis. Further analyses revealed that ARR19 was expressed in Leydig cells, and its expression was differentially regulated during Leydig cell development. Adenovirus-mediated overexpression of ARR19 in Leydig cells inhibited testicular steroidogenesis, down-regulating the expression of steroidogenic enzymes, which suggests that ARR19 is an antisteroidogenic factor. Interestingly, cAMP/luteinizing hormone attenuated ARR19 expression in a fashion similar to that of GATA-1, which was previously reported to be down-regulated by cAMP. Sequence analysis of the Arr19 promoter revealed the presence of two putative GATA-1 binding motifs. Further analyses with 5' deletion and point mutants of putative GATA-1 binding motifs showed that these GATA-1 binding sites were critical for high promoter activity. CREB-binding protein coactivated GATA-1 and markedly increased the activity of the Arr19 promoter. Both GATA-1 and CREB-binding proteins occupied the GATA-1 motifs within the Arr19 promoter, which was repressed by cAMP treatment. Altogether, these findings demonstrate that ARR19 is the target gene of GATA-1 and suggest that ARR19 gene expression in testicular Leydig cells is regulated by luteinizing hormone/cAMP signaling via the control of GATA-1 expression, resulting in the control of testicular steroidogenesis.


Assuntos
Fator de Transcrição GATA1/metabolismo , Células Intersticiais do Testículo/fisiologia , Proteínas Repressoras/genética , Testículo/fisiologia , Androgênios/biossíntese , Animais , Células Cultivadas , AMP Cíclico/metabolismo , Fator de Transcrição GATA1/genética , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Luteinizante/metabolismo , Proteínas com Domínio MARVEL , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas/fisiologia , Proteínas Repressoras/metabolismo , Testículo/citologia , Testículo/embriologia , Ativação Transcricional/fisiologia
20.
Reproduction ; 137(2): 345-51, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19017724

RESUMO

Spermatogenesis is a complex process that produces haploid motile sperms from diploid spermatogonia through dramatic morphological and biochemical changes. P-type ATPases, which support a variety of cellular processes, have been shown to play a role in the functioning of sperm. In this study, we isolated one putative androgen-regulated gene, which is the previously reported sperm-specific aminophospholipid transporter (Atp8b3, previously known as Saplt), and explored its expression pattern in murine testis and its biochemical characteristics as a P-type ATPase. Atp8b3 is exclusively expressed in the testis and its expression is developmentally regulated during testicular development. Immunohistochemistry of the testis reveals that Atp8b3 is expressed only in germ cells, especially haploid spermatids, and the protein is localized in developing acrosomes. As expected, from its primary amino acid sequence, ATP8B3 has an ATPase activity and is phosphorylated by an ATP-producing acylphosphate intermediate, which is a signature property of the P-Type ATPases. Together, ATP8B3 may play a role in acrosome development and/or in sperm function during fertilization.


Assuntos
Adenosina Trifosfatases/análise , Proteínas de Transferência de Fosfolipídeos/análise , ATPases Translocadoras de Prótons/metabolismo , Espermatogênese/fisiologia , Testículo/enzimologia , Acrossomo/enzimologia , Animais , Células COS , Chlorocebus aethiops , Imuno-Histoquímica , Masculino , Camundongos , Microscopia de Fluorescência , ATPases Translocadoras de Prótons/análise , Espermátides/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA