Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(18): 8743-8752, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37698378

RESUMO

A mixed-dimensional dual-channel synaptic transistor composed of inorganic nanoparticles and organic nanowires was fabricated to expand the photoelectric gain range. The device can actualize the sensitization features of the nociceptor and shows improved responsiveness to visible light. Under electrical pulses with different polarities, the apparatus exhibits reconfigurable asymmetric bidirectional plasticity. Moreover, the devices demonstrate good operational tolerance and mechanical stability, retaining more than 60% of their maximum responsiveness after 100 consecutive/bidirectional and 1000 flex/flat operations. The improved photoelectric response of the device endows a high image recognition accuracy of greater than 80%. Asymmetric bidirectional plasticity is used as punishment/reward in a psychological experiment to emulate the improvement of learning motivation and enables real-time forward and backward deflection (+7 and -25°) of artificial muscle. The mixed-dimensional optoelectronic artificial synapses with switchable behavior and electron/hole transport type have important prospects for neuromorphic processing and artificial somatosensory nerves.

2.
Nat Commun ; 13(1): 7427, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460638

RESUMO

Brain-inspired electronics require artificial synapses that have ultra-low energy consumption, high operating speed, and stable flexibility. Here, we demonstrate a flexible artificial synapse that uses a rapidly crystallized perovskite layer at room temperature. The device achieves a series of synaptic functions, including logical operations, temporal and spatial rules, and associative learning. Passivation using phenethyl-ammonium iodide eliminated defects and charge traps to reduce the energy consumption to 13.5 aJ per synaptic event, which is the world record for two-terminal artificial synapses. At this ultralow energy consumption, the device achieves ultrafast response frequency of up to 4.17 MHz; which is orders of magnitude magnitudes higher than previous perovskite artificial synapses. A multi-stimulus accumulative artificial neuromuscular system was then fabricated using the perovskite synapse as a key processing unit to control electrochemical artificial muscles, and realized muscular-fatigue warning. This artificial synapse will have applications in future bio-inspired electronics and neurorobots.


Assuntos
Compostos de Cálcio , Óxidos , Músculos , Sinapses
3.
Adv Sci (Weinh) ; 9(24): e2106124, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35686320

RESUMO

Tactile perception enabled by somatosensory system in human is essential for dexterous tool usage, communication, and interaction. Imparting tactile recognition functions to advanced robots and interactive systems can potentially improve their cognition and intelligence. Here, a flexible artificial sensory nerve that mimics the tactile sensing, neural coding, and synaptic processing functions in human sensory nerve is developed to achieve neuromorphic tactile recognition at device level without relying on algorithms or computing resources. An interfacial self-assembly technique, which produces uniform and defect-less thin film of semiconductor nanoparticles on arbitrary substrates, is employed to prepare the flexible synaptic device. The neural facilitation and sensory memory characteristics of the proton-gating synaptic device enable this system to identify material hardness during robotic grasping and recognize tapping patterns during tactile interaction in a continuous, real-time, high-accuracy manner, demonstrating neuromorphic intelligence and recognition capabilities. This artificial sensory nerve produced in wearable and portable form can be readily integrated with advanced robots and smart human-machine interfaces for implementing human-like tactile cognition in neuromorphic electronics toward robotic and wearable applications.


Assuntos
Nanopartículas , Robótica , Eletrônica , Humanos , Memória , Tato/fisiologia
4.
Nat Commun ; 12(1): 1068, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594066

RESUMO

A graphdiyne-based artificial synapse (GAS), exhibiting intrinsic short-term plasticity, has been proposed to mimic biological signal transmission behavior. The impulse response of the GAS has been reduced to several millivolts with competitive femtowatt-level consumption, exceeding the biological level by orders of magnitude. Most importantly, the GAS is capable of parallelly processing signals transmitted from multiple pre-neurons and therefore realizing dynamic logic and spatiotemporal rules. It is also found that the GAS is thermally stable (at 353 K) and environmentally stable (in a relative humidity up to 35%). Our artificial efferent nerve, connecting the GAS with artificial muscles, has been demonstrated to complete the information integration of pre-neurons and the information output of motor neurons, which is advantageous for coalescing multiple sensory feedbacks and reacting to events. Our synaptic element has potential applications in bioinspired peripheral nervous systems of soft electronics, neurorobotics, and biohybrid systems of brain-computer interfaces.


Assuntos
Grafite/farmacologia , Neurônios Eferentes/fisiologia , Sinapses/fisiologia , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Teoria da Densidade Funcional , Difusão , Íons , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal , Neurônios Eferentes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Temperatura
5.
Small ; 17(9): e2000041, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32452636

RESUMO

Artificial synapses (ASs) are electronic devices emulating important functions of biological synapses, which are essential building blocks of artificial neuromorphic networks for brain-inspired computing. A human brain consists of several quadrillion synapses for information storage and processing, and massively parallel computation. Neuromorphic systems require ASs to mimic biological synaptic functions, such as paired-pulse facilitation, short-term potentiation, long-term potentiation, spatiotemporally-correlated signal processing, and spike-timing-dependent plasticity, etc. Feature size and energy consumption of ASs need to be minimized for high-density energy-efficient integration. This work reviews recent progress on ASs. First, synaptic plasticity and functional emulation are introduced, and then synaptic electronic devices for neuromorphic computing systems are discussed. Recent advances in flexible artificial synapses for artificial sensory nerves are also briefly introduced. Finally, challenges and opportunities in the field are discussed.


Assuntos
Plasticidade Neuronal , Sinapses , Encéfalo , Eletrônica , Humanos
6.
Nanoscale Horiz ; 5(9): 1324-1331, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749433

RESUMO

In a biological synapse, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors mediate fast excitatory neurotransmission, whereas N-methyl-d-aspartate (NMDA) receptors trigger an enhanced memory effect; the complementary roles of AMPA and NMDA are essential in short-term plasticity (STP) to enhance memory effect (EME) transition. Herein, we report the design and fabrication of the first two-dimensional (2D) conjugated polymer (CP)-based synaptic transistor. The special design of the 2D CP with nanoscale-segregated 'polka dot'-structured crystalline phases and adjacent amorphous phases emulate the different receptors of NMDA and AMPA on the postsynaptic membrane for the first time. The synergistic effect of mixed receptors distinguishes STP and enhanced memory effect with a critical point, which regulates the threshold level of the enhanced memory effect induction. This effect has not been reported yet. The special structure avoids easy saturation of a single receptor with consecutively increased excitatory postsynaptic current (EPSC) in response to 1200 stimuli. Furthermore, the 2D P3HT synapse successfully emulates activity-dependent synaptic plasticity, such as metaplasticity and homeostatic plasticity, which are advanced forms of plasticity, allowing the self-adaptive ability of a synapse, but have rarely been reported.


Assuntos
Materiais Biomiméticos/química , Biomimética/instrumentação , Metilmetacrilatos/química , Poliestirenos/química , Sinapses , Transistores Eletrônicos , Imidazóis/química , Imidas/química , Plasticidade Neuronal , Receptores de AMPA/química , Receptores de N-Metil-D-Aspartato/química
7.
Small ; 15(32): e1900695, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30972944

RESUMO

Synapses are essential to the transmission of nervous signals. Synaptic plasticity allows changes in synaptic strength that make a brain capable of learning from experience. During development of neuromorphic electronics, great efforts have been made to design and fabricate electronic devices that emulate synapses. Three-terminal artificial synapses have the merits of concurrently transmitting signals and learning. Inorganic and organic electronic synapses have mimicked plasticity and learning. Optoelectronic synapses and photonic synapses have the prospective benefits of low electrical energy loss, high bandwidth, and mechanical robustness. These artificial synapses provide new opportunities for the development of neuromorphic systems that can use parallel processing to manipulate datasets in real time. Synaptic devices have also been used to build artificial sensory systems. Here, recent progress in the development and application of three-terminal artificial synapses and artificial sensory systems is reviewed.


Assuntos
Biomimética , Eletrônica , Sinapses/fisiologia , Grafite/química , Plasticidade Neuronal , Óptica e Fotônica
8.
Nanotechnology ; 30(20): 202002, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-30669134

RESUMO

Gate insulators play a role as important as that of the semiconductor in high performance OFETs, with a high on/off current ratio, low hysteresis, and device stability. The essential requirements for gate dielectrics include high capacitance, high dielectric breakdown strength, solution-processibility, and flexibility. In this paper we review progress in recent years in developing high-k gate polymeric insulators for modern organic electronic applications. After a general introduction to OFETs, three types of high-k polymeric gate insulating materials are enumerated in achieving high-quality OFETs, including polymer gate insulators, polymer-inorganic gate composites or bilayers, and ion gel electrolytes. Especially, we emphasize the significance, implementation and development of high-k polymeric gate insulators used in OFETs for future low voltage operated and flexible electronics. Finally, a brief summary and outlook are presented.

9.
Nanotechnology ; 30(1): 012001, 2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30256764

RESUMO

Artificial synapses emulate biological synaptic signals in neuromorphic systems to attain brain-like computation and autonomous learning behaviors in non-von-Neumann systems. Several classes of materials have been applied to this field to achieve numerous functionalities of biological synapses. Nanomaterials (NMs), such as one-dimensional (1D) and two-dimensional (2D) NMs have shown great potential due to their nanometer feature size (1D) and molecular-level thickness (2D). In this paper, we review the development of artificial synapses, and discuss state-of-the-art artificial synapses based on NMs.


Assuntos
Nanoestruturas/química , Redes Neurais de Computação , Encéfalo/fisiologia , Eletrônica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA