RESUMO
An online gas chromatograph ï¼GC5000ï¼ was used to monitor the volatile organic compounds ï¼VOCsï¼ in the atmospheric environment of Zhengzhou City during the ozone campaign period from May to September of 2022. The relationship between O3 and its precursors as well as meteorology was analyzed and the pollution characteristics of VOCs during the O3 exceeding and non-exceeding the standard days were compared and explored. Different VOC activity evaluation methods of OFP and L·OH were utilized to compare and analyze the key active components and species and the ratio analysis ï¼RAï¼ and positive matrix factorization ï¼PMFï¼ analysis models were used to study the apportionment contribution of VOCs. The results showed that the O3 pollution in June and September in Zhengzhou was mainly due to the adverse meteorological conditions of high temperature and low humidity, strong radiation, and low wind speed, superimposed by the prominent concentrations of local VOCs and NO2, resulting in frequently high and excessive O3 occurrences. The VOCs concentration in Zhengzhou during the campaign period was an average of ï¼68.3 ± 18.4ï¼ µg·m-3, whereas it was 75.7 µg·m-3 during O3 exceeding standard days and 13.4 µg·m-3 during O3 non-exceeding days, respectively. Among the VOC species, the OVOCs was 31.6%, accounting for the highest mass fraction, followed by halogenated hydrocarbon, alkane, and aromatic hydrocarbon, and the major species were ethane, n-butane, dichloromethane, propane, isopentane, toluene, chloromethane, 1,2-dichloroethane, and acetylene. VOC diurnal variation indicated that the emission of VOC pollution sources in the morning, evening peak, and at night should be paid more attention. The contribution of VOCs to OFP during the campaign period was ï¼130.5 ± 46.4ï¼ µg·m-3, and the L·OH was ï¼6.5 ± 2.9ï¼ s-1, among which the top 15 species with high activity were primarily acetaldehyde, isoprene, ethylene, m/p-xylene, toluene, hexal, isopentane, propanal, propylene, trans-2-butene, etc. In particular, the contributions of acetaldehyde, isoprene, ethylene, and hexal species were prominent during the O3 exceeding days. Ratio analysis showed that the B/T ratio in Zhengzhou from May to September ranged from 0.05 to 5.3, with an average value of 1.1 ± 0.6, and the regional VOCs was mainly controlled by the aging air mass with possible long-distance transports. The analysis of the PMF model showed that the major pollution sources to VOC concentration in Zhengzhou were motor vehicle exhaust emission sources and industrial solvent and secondary conversion sources, contributing 25.6% and 25.8%, respectively. The contribution rates of solvent coating sources, oil and gas volatile sources, plant emission sources, industrial solvents, and secondary conversion sources during O3 exceeding days were 5.4%, 4.7%, 3.3%, and 0.7% higher than those during O3 non-exceeding days, respectively. The research showed that the management of VOCs and NOx pollution sources should be strengthened to reduce their contribution to the O3 generation when O3 exceeds the standard.
RESUMO
Cyclotides are plant cyclic peptides with exceptional stability and diverse bioactivity, making them promising candidates for biomedical applications. Therefore, the study of cyclotides has attracted increasing attention in recent years. However, the existing cyclotide detection methods face limitations in sensitivity, accuracy, and reliability. To address these challenges, we developed an integrated strategy using a combination of strong cation exchange chromatography techniques for removing interfering small molecules, Orbitrap Exploris 480 mass spectrometry (OEMS); this is a detection and database searching-based method for cyclotide verification, which greatly improved the sensitivity, accuracy, and reliability of cyclotide identification. This strategy was subsequently employed for cyclotide mapping in Viola with a minute amount of starting tissue, resulting the identification of 65 known and 18 potentially novel cyclotides, which is the largest dataset of cyclotides for Viola philippica. This strategy provided valuable insights into the cyclotide diversity and distribution in V. philippica, with potential applications in drug discovery and other biomedical fields.
Assuntos
Ciclotídeos , Viola , Ciclotídeos/química , Ciclotídeos/análise , Ciclotídeos/isolamento & purificação , Viola/química , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Espectrometria de Massas em Tandem/métodos , Proteínas de Plantas/análise , Proteínas de Plantas/químicaRESUMO
BACKGROUND: Unicompartmental knee arthroplasty (UKA) has been proved to be a successful treatment for osteoarthritis patients. However, the stress shielding caused by mismatch in mechanical properties between human bones and artificial implants remains as a challenging issue. This study aimed to properly design a bionic porous tibial implant and evaluate its biomechanical effect in reconstructing stress transfer pathway after UKA surgery. METHODS: Voronoi structures with different strut sizes and porosities were designed and manufactured with Ti6Al4V through additive manufacturing and subjected to quasi-static compression tests. The Gibson-Ashby model was used to relate mechanical properties with design parameters. Subsequently, finite element models were developed for porous UKA, conventional UKA, and native knee to evaluate the biomechanical effect of tibial implant with designed structures during the stance phase. RESULTS: The internal stress distribution on the tibia plateau in the medial compartment of the porous UKA knee was found to closely resemble that of the native knee. Furthermore, the mean stress values in the medial regions of the tibial plateau of the porous UKA knee were at least 44.7% higher than that of the conventional UKA knee for all subjects during the most loading conditions. The strain shielding reduction effect of the porous UKA knee model was significant under the implant and near the load contact sites. For subject 1 to 3, the average percentages of nodes in bone preserving and building region (strain values range from 400 to 3000 µm/m) of the porous UKA knee model, ranging from 68.7 to 80.5%, were higher than that of the conventional UKA knee model, ranging from 61.6 to 68.6%. CONCLUSIONS: The comparison results indicated that the tibial implant with designed Voronoi structure offered better biomechanical functionality on the tibial plateau after UKA. Additionally, the model and associated analysis provide a well-defined design process and dependable selection criteria for design parameters of UKA implants with Voronoi structures.
Assuntos
Artroplastia do Joelho , Análise de Elementos Finitos , Prótese do Joelho , Desenho de Prótese , Estresse Mecânico , Artroplastia do Joelho/métodos , Humanos , Porosidade , Tíbia/cirurgia , Fenômenos Biomecânicos , Titânio , LigasRESUMO
As the most senstitive plant organs to environmental changes, leaves serve as crucial indicators of plant survival strategies. We measured the morphology, anatomical traits, gas exchange parameters, and chlorophyll fluorescence parameters of Quercus aquifolioides (evergreen broad-leaved) and Sorbus rehderiana (deciduous broad-leaved) at altitudes of 2600, 2800, 3000, 3200 and 3400 m on the eastern edge of the Qinghai-Tibet Plateau, China. We explored the similarity and difference in their responses to altitude change and the ecological adaptation strategy. The results showed that as the altitude increased, leaf dry matter content of Q. aquifolioides decreased, that of S. rehderiana increased, leaf size for both species gradually decreased, and the palisade coefficient of Q. aquifolioides showed a decreasing trend, contrasting with the increasing trend in S. rehderiana. As the altitude increased, the thickness of leaves, palisade tissue, spongy tissue, upper epidermis, and lower epidermis of both species increased significantly, with the increment of 22.4%, 4.9%, 45.1%, 23.3%, 19.6%, and 28.2%, 46.9%, 8.9%, 25.9%, 20.8% at altitude of 3400 m, respectively, compared with the altitude of 2600 m. The gas exchange and chlorophyll fluorescence parameters of S. rehderiana significantly increased with increasing altitude, while Q. aquifolioides showed the opposite trend. Leaf anatomical traits, gas exchange, and chlorophyll fluorescence parameters of both species displayed considerable plasticity. There were significant correlations among most leaf traits and between leaf traits and altitude. The survival strategy of Q. aquifolioides was more conservative in response to altitude changes, while that of S. rehderiana was more active. Both species adapted to different altitudes by adjusting their own traits.
Assuntos
Altitude , Folhas de Planta , Quercus , Sorbus , Quercus/fisiologia , Quercus/crescimento & desenvolvimento , China , Ecossistema , Tibet , Adaptação FisiológicaRESUMO
Many BF2 complexes of heteroaromatics are well known for their dual-state emission (DSE) properties. However, AIE and ACQ effects have also been observed in certain cases. To date, no rational explanations have been proposed for these uncommon photoluminescence (PL) behaviours. The current research prepared four BF2 complexes of N-benzoyl 2-aminobenzothiazoles with diversified photoluminescence (PL) properties as model compounds and utilized quantum chemical calculation tools to address this issue. Theoretical calculations revealed that the electron-donating groups (EDGs) at the para-position of the exocyclic phenyl ring exert significant influence on their ground-state electronic structures and vertical excitation features. Potential energy curve (PEC) analysis showed that the exocyclic phenyl ring and NMe2 could not function as effective rotors due to elevated energy barriers. Only the NPh2 of BFBB-3 could spontaneously rotate â¼60° to induce the formation of an emissive twisted intramolecular charge transfer (TICT) state. The two-channel model involving both vibronic relaxation and S0/S1 surface crossing revealed that the drastic narrowing of the S1/S0 energy gap in the region approaching minimun energy conical intersection (MECI) led to the generation of a dark state in BFBB-1. The small energy barrier to access the dark-state region makes the resulting fast internal conversion a competitive channel for excited-state deactivation. In contrast, the presence of EDGs in BFBB-2 and 4 inhibits this pathway, thereby resulting in intense fluorescence emissions in solution. In addition, crystallographic analysis illustrated that the F atoms perpendicular to the polyheterocycle promoted a slipped face-to-face packing mode and enhanced intermolecular interactions. The efficiencies of their solid-state emissions are mainly affected by the degree of π-π overlaps.
RESUMO
This study aimed to explore the involvement of Transmembrane and coiled-coil domains 1 (TMCO1) in ovarian cancer progression and its regulatory mechanisms in cisplatin resistance. Using the GEPIA database, we analyzed TMCO1 expression in ovarian cancer and normal tissues. In a cohort of 99 ovarian cancer patients, immunohistochemistry and immunofluorescence were employed to assess TMCO1 expression in tumor and adjacent tissues, correlating findings with clinical and pathological characteristics. TMCO1 overexpression and knockout cell models were constructed, and their impact on non-cisplatin-resistant (SK-OV-3) and cisplatin-resistant (SK-OV-3-CDDP) ovarian cancer cells was investigated through cloning, wound healing, Fluo 4, and Transwell experiments. Knocking down CALR and VDAC1 was performed to examine their effects on TMCO1, cell proliferation, and malignant markers. Subcutaneous tumor models in nude mice elucidated the in vivo role of TMCO1 in tumor growth. Expression levels of CALR, VDAC1, angiogenesis indicators (CD34), and epithelial-mesenchymal transition (EMT) markers were evaluated. TMCO1 expression in ovarian cancer tissue significantly differed from normal tissue, correlating with survival rates. TMCO1 overexpression was associated with lymph node metastases, late FIGO stage, and larger tumors. TMCO1 promoted proliferation, calcium ion elevation, cytoskeletal remodeling, and metastasis in SK-OV-3 and SK-OV-3-CDDP cells, upregulating VDAC1, CALR, Vimentin, N-cadherin, ß-catenin, and downregulating E-cadherin. Silencing TMCO1 inhibited cell growth, proliferation, and angiogenesis in vivo, suppressing the expression of CALR, VDAC1, Vimentin, N-cadherin, and ß-catenin. Overall, this study highlighted TMCO1 as a crucial regulator in ovarian cancer progression, influencing VDAC1 through CALR and impacting diverse cellular processes, offering potential as a targeted therapeutic strategy for ovarian cancer.
Assuntos
Canais de Cálcio , Calreticulina , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , beta Catenina/metabolismo , Caderinas/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Vimentina/metabolismo , Calreticulina/genética , Calreticulina/metabolismoRESUMO
[Erratum to: BMB Reports 2023; 56(3): 184-189, PMID: 36617466, PMCID: PMC10068343] The BMB Reports would like to correct in BMB Rep. 56(3): 184-189, titled "circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis". The original version of this article unfortunately contained image error in the Fig. 3. This article has been updated to correct an error in the image in Fig. 3D. The author apologizes for any inconvenience or confusion this error may cause. Author information has been modified in the original PDF version.
RESUMO
OBJECTIVE: This study aims to investigate the relationship between abnormal vaginal microecology and human papillomavirus (HPV) infection, as well as the squamous intraepithelial lesions (SIL) progression. METHODS: A total of 383 patients diagnosed with HPV infection in our hospital between March 2017 and February 2022 were selected as the experimental group. In addition, several volunteers (n = 898) who underwent physical examination during the same period were randomly selected as the control group. Subsequently, we conducted several investigations, such as HPV detection and gene typing, examined vaginal microecological imbalances, and performed cytological examinations to analyze the correlation between microecological changes, different types of HPV infection, and SIL progression. RESULTS: HPV detection primarily included single and high-risk types of HPV infections. Moreover, significant disparities in the vaginal microecological environment between patients with persistent HPV infection and the control group, as well as patients with low-grade and high-grade SIL (LSIL and HSIL), were observed. The regression analysis revealed a correlation between LSIL and microflora density, diversity, bacteriological vaginosis (BV), vulvovaginal candidiasis (VVC), trichomonas vaginalis (TV), sialidase, as well as Lactobacillus. In addition, we identified an association between HSIL and pH, flora density, diversity, BV, VVC, candida vaginitis (CV), leukocyte esterase, catalase, and Lactobacillus levels. CONCLUSION: These findings revealed a significant association between abnormal vaginal microecology and both HPV infection and the SIL progression.
Assuntos
Candidíase Vulvovaginal , Infecções por Papillomavirus , Lesões Intraepiteliais Escamosas , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Infecções por Papillomavirus/diagnóstico , Esfregaço Vaginal , Vagina/patologia , Papillomaviridae/genética , Displasia do Colo do Útero/diagnósticoRESUMO
GOALS: A combination of multiple tests was introduced to noninvasively investigate the differences in pathophysiologies among functional dyspepsia (FD) subgroups, including postprandial distress syndrome (PDS), epigastric pain syndrome (EPS), and overlap. BACKGROUND: It has not been extensively evaluated whether different pathophysiologies are involved in FD subgroups. STUDY: This multicenter study included 364 FD patients fulfilling Rome IV criteria and 47 healthy controls. A combined noninvasive gastric and autonomic function test was performed: The electrogastrogram and electrocardiogram were recorded simultaneously in the fasting state and after a drink test. Symptoms after drinking were recorded using visual analog scale. RESULTS: (1) Compared with HC, FD patients showed a decreased maximum tolerable volume (MTV) ( P <0.01) and percentage of normal gastric slow waves [normal gastric slow waves (%NSW)] ( P <0.01), and increased postdrinking symptoms, anxiety ( P <0.01), and depression ( P <0.01). The drink reduced %NSW in both FD patients and HC; however, the effect was more potent in patients. (2) The PDS and overlap groups displayed a reduced MTV ( P <0.05). The overlap group exhibited a higher symptom score at 30 minutes after drinking, and higher anxiety and depression scores, and a higher sympathovagal ratio than the EPS ( P <0.05 for all) and PDS ( P <0.01 for all). (3) In the PDS subgroup, the MTV, postprandial sympathovagal ratio, and depression were associated with the overall dyspepsia symptom scale (DSS, P =0.034, 0.021, 0.043, respectively). No significant associations were found in the other 2 subgroups. CONCLUSIONS: The combination of multiple tests can detect pathophysiological abnormities in FD patients. Overall, patients with overlap symptoms display more severe pathophysiologies.
Assuntos
Dispepsia , Gastrite , Humanos , Dor Abdominal/etiologia , Dor Abdominal/diagnóstico , Gastrite/complicações , Período Pós-Prandial/fisiologiaRESUMO
OBJECTIVE: To investigate the expression and clinical significance of T helper cell 9 (Th9) and its cytokine interleukin 9(IL-9) in peripheral blood of patients with chronic lymphocytic leukemia(CLL). METHODS: A total of 43 newly diagnosed patients with chronic lymphocytic leukemia in the First Affiliated Hospital of Xinjiang Medical University from June 2021 to June 2022 were selected as the case group. The patients were divided into Binet A group (13 cases), Binet B group (20 cases) and Binet C group (10 cases) by Binet staging system, and 20 healthy volunteers who underwent physical examinationin in our hospital in the same period served as control group. The proportion of Th9 cells in peripheral blood was detected by flow cytometry, the expression level of Th9 specific transcription factors PU.1 and IRF4 was detected by Western blot, and the expression level of serum cytokine IL-9 was detected by ELISA. The proportion of Th9, the expression of PU.1, IRF4 and IL-9 in each group were compared, and the correlation between the proportion of Th9, IL-9 and clinicopathological indexes of CLL patients was analyzed. RESULTS: The proportion of Th9, the expression of PU.1, IRF4 and IL-9 in CLL group were significantly higher than those in control group (P<0.05), the proportion of Th9 and the expression of IL-9 in Binet B and C group were higher than those in Binet A group (P<0.05), but there was no significant difference in the proportion of Th9 cells between Binet B group and C group (P>0.05). The expression of IL-9 in Binet C group was significantly higher than that in Binet B group (P<0.05) . The proportion of Th9 cells and IL-9 were highly expression in patients with ß2 microglobulin abnormality, IGHV unmutation, P53 abnormality and hepatosplenic lymph node enlargement(P<0.05), but not related to age and sex (P>0.05). The results of Spearman correlation analysis showed that the proportion of Th9 in patients with CLL was negatively correlated with the lymphocytic account and lymphocyte proportion(rs=-0.32ï¼rs=-0.34). The proportion of Th9 and IL-9 were positively correlated with Binet stage, Rai stage and CLL-IPI Scoring (rs=0.79ï¼rs=0.54ï¼rs=0.58ï¼ rs=0.72ï¼rs=0.63ï¼rs=0.45), but not with WBC, CD4+ T cells and CD8+T cells (P>0.05). The proportion of Th9 was positively correlated with IL-9 (rs=0.53). CONCLUSION: Th9 cells and IL-9 are abnormally highly expressed in CLL, which is related to the poor prognosis of CLL.
Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Interleucina-9 , Relevância Clínica , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/patologia , CitocinasRESUMO
BACKGROUND: Accumulating studies have reported indispensable functions of circular RNAs (circRNA) in tumor progression through regulation of gene expression. However, circRNA expression profiles and functions in human ovarian carcinoma (OC) are yet to be fully established. METHODS: In this research, deep sequencing of circRNAs from OC samples and paired adjacent normal tissues was performed to establish expression profiles and circ-PHC3 levels between the groups further compared using RT-qPCR. The effects of ectopic overexpression of miR-497-5p and SOX9 and siRNA-mediated knockdown of circ-PHC3 and an miR-497-5p inhibitor were explored to clarify the regulatory mechanisms underlying circ-PHC3 activity in OC proliferation and metastasis. Information from public databases and the luciferase reporter assay were further utilized to examine the potential correlations among circ-PHC3, miR-497-5p and SOX9. RESULTS: Our results showed significant upregulation of circ-PHC3 in both OC cell lines and tissues. In the luciferase reporter assay, downregulation of circ-PHC3 led to suppression of metastasis and proliferation, potentially through targeted effects on the miR-497-5p/SOX9 axis in OC. SOX9 overexpression or miR-497-5p suppression rescued OC cell proliferation and invasion following silencing of circ-PHC3. Moreover, SOX9 inhibition induced restoration of OC cell invasion and proliferation under conditions of overexpression of miR-497-5p. Thus, circ-PHC3 appears to exert effects on cancer stem cell differentiation through regulation of the miR-497-5p/SOX9 axis. CONCLUSION: Taken together, our findings suggest that circ-PHC3 enhances OC progression through functioning as an miR-497-5p sponge to promote SOX9 expression, supporting its potential as a promising candidate target for OC therapy.
Assuntos
Carcinoma , MicroRNAs , Neoplasias Ovarianas , RNA Circular , Fatores de Transcrição SOX9 , Feminino , Humanos , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Neoplasias Ovarianas/genética , RNA Circular/genética , Fatores de Transcrição SOX9/genéticaRESUMO
[Erratum to: BMB Reports 2023; 56(3): 184-189, PMID: 36617466, PMCID: PMC10068343] The BMB Reports would like to correct in BMB Rep. 56(3): 184-189, titled "circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis". This research has the wrong affiliation of the authors and number of affiliation. Since author's affiliation is incorrect, this information has now been corrected as follows. Kaiyun Qin1,3,#, Fenghua Zhang2,#, Hongxia Wang1, Na Wang1, Hongbing Qiu4, Xinzhuan Jia1,5, Shan Gong1 & Zhengmao Zhang1,* 1Department of Gynecology, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, 2Department of Breast & Thyroid Surgery, Hebei General Hospital, Hebei Shijiazhuang 050057, 3Department of Gynecology, Hebei General Hospital, Hebei Shijiazhuang 050057, 4Department of Gynecology, Hebei Xingtai People's Hospital, Hebei Shijiazhuang 054001, 5Department of Reproductive Medicine, Fourth Hospital of Hebei Medical University, Hebei Shijiazhuang 050011, China The author apologizes for any inconvenience or confusion this error may cause. Author information has been modified in the original PDF version.
RESUMO
Objectives: Evodia rutaecarpa (ER) is a well-known herbal Chinese medicine traditionally used for analgesia in dysmenorrhea, headaches, abdominal pain, etc. Notably, the analgesic effect of wine-processed Evodia rutaecarpa (PER) was more potent than that of raw ER. This research aimed to investigate the mechanism and pharmacodynamic substance basis of raw ER and PER on smooth muscle cells of dysmenorrhea mice. Methods: Metabolomics methods based on UPLC-Q-TOF-MS were utilized to analyse the differential components of ER before and after wine processing. Afterwards, the uterine smooth muscle cells were isolated from the uterine tissue of dysmenorrhea and normal mice. The isolated dysmenorrhea uterine smooth muscle cells were randomly divided into four groups: model group, 7-hydroxycoumarin group (1 mmol/L), chlorogenic acid (1 mmol/L), and limonin (50 µmol/L). The normal group consisted of the isolated normal mouse uterine smooth muscle cells, which were repeated 3 times in each group. The cell contraction and the expression of P2X3 and Ca2+ in vitro were determined using immunofluorescence staining and laser confocal; ELISA was used for detection of PGE2, ET-1, and NO content after 7-hydroxycoumarin, chlorogenic acid, and limonin administered for 24 h. Results: The metabolomics results suggested that seven differential compounds were identified in the extracts of raw ER and PER, including chlorogenic acid, 7-hydroxycoumarin, hydroxy evodiamine, laudanosine, evollionines A, limonin, and 1-methyl-2-[(z)-4-nonenyl]-4 (1H)-quinolone. The in vitro results showed that 7-hydroxycoumarin, chlorogenic acid, and limonin were able to inhibit cell contraction and PGE2, ET-1, P2X3, and Ca2+ in dysmenorrhea mouse uterine smooth muscle cells and increase the content of NO. Conclusion: Our finding suggested that the compounds of the PER were different from those of the raw ER, and 7-hydroxycoumarin, chlorogenic acid, and limonin could improve dysmenorrhea in mice whose uterine smooth muscle cell contraction was closed with endocrine factors and P2X3-Ca2+ pathway.
Assuntos
Evodia , Limoninas , Vinho , Feminino , Humanos , Animais , Camundongos , Dismenorreia/tratamento farmacológico , Ácido Clorogênico , DinoprostonaRESUMO
Stroke has become a major disease that seriously threatens human health due to its high incidence and disability rates. Most patients undergo upper limb motor dysfunction after stroke, which significantly impairs the ability of stroke survivors in their activities of daily living (ADL). Robots provide an optional solution for stroke rehabilitation by attending therapy in the hospital and the community, however, the rehabilitation robot still has difficulty in providing needed assistance interactively like human clinicians in conventional therapy. For safe and rehabilitation training, a human-robot interaction space reshaping method was proposed based on the recovery states of patients. According to different recovery states, we designed seven experimental protocols suitable for distinguishing rehabilitation training sessions. To achieve assist-as-needed (AAN) control, a PSO-SVM classification model and an LSTM-KF regression model were introduced to recognize the motor ability of patients with electromyography (EMG) and kinematic data, and a region controller for interaction space shaping was studied. Ten groups of offline and online experiments and corresponding data processing were conducted, and the machine learning and AAN control results were presented, which ensured the effective and the safe upper limb rehabilitation training. To discuss the human-robot interaction in different training stages and sessions, we defined a quantified assistance level index that characterizes the rehabilitation needs by considering the engagement of the patients and had the potential to apply in clinical upper limb rehabilitation training.
RESUMO
Synthesis-oriented design led us to the discovery of a series of novel cyanine-borondifluoride curcuminoid hybrids called Nanchang Red (NCR) dyes that overcome the intrinsic low synthetic yields of symmetrical cyanine-difluoroboronate (BF2 )-hybridized NIR dyes. The hybridization endows NCR dyes with high molar extinction coefficients, efficient red-to-NIR emission, and enlarged Stokes shifts. Quantum chemical calculations revealed that the asymmetrical layout of the three key electron-withdrawing and electron-donating fragments results in a special pattern of partial charge separation and inconsistent degrees of charge delocalization on their π-conjugated backbones. While the nature of the hemicyanine fragment exerts significant influence on the excitation modes of NCR dyes, the borondifluoride hemicurcuminoid fragment is the major contributor to the enlarged Stokes shifts. Cell imaging experiments illustrated that a subtle change in the N-heterocycle of the hemicyanine fragment has a remarkable effect on the subcellular localization of NCR dyes. Unlike other previously reported cyanine-BF2 hybridized dyes, which mainly target mitochondria, the benzothiazole and indole-based NCR dyes accumulate in both the endoplasmic reticulum (ER) and lipid droplets of HeLa cells, whereas the benzoxazole and quinoline-based NCR dyes stain the ER specifically.
Assuntos
Corantes Fluorescentes , Quinolinas , Humanos , Células HeLa , Corantes Fluorescentes/química , Carbocianinas/química , Quinolinas/químicaRESUMO
Ovarian cancer (OC) is the most common gynecological malignancy worldwide, and chemoresistance occurs in most patients, resulting in treatment failure. A better understanding of the molecular processes underlying drug resistance is crucial for development of efficient therapies to improve OC patient outcomes. Circular RNAs (circRNAs) and ferroptosis play crucial roles in tumorigenesis and resistance to chemotherapy. However, little is known about the role(s) of circRNAs in regulating ferroptosis in OC. To gain insights into cisplatin resistance in OC, we studied the ferroptosis-associated circRNA circSnx12. We evaluated circSnx12 expression in OC cell lines and tissues that were susceptible or resistant to cisplatin using quantitative real-time PCR. We also conducted in vitro and in vivo assays examining the function and mechanism of lnc-LBCSs. Knockdown of circSnx12 rendered cisplatin-resistant OC cells more sensitive to cisplatin in vitro and in vivo by activating ferroptosis, which was at least partially abolished by downregulation of miR-194-5p. Molecular mechanics studies indicate that circSnx12 can be a molecular sponge of miR-194-5p, which targets SLC7A11. According to our findings, circSnx12 ameliorates cisplatin resistance by blocking ferroptosis via a miR-194-5p/SLC7A11 pathway. CircARNT2 may thus serve as an effective therapeutic target for overcoming cisplatin resistance in OC. [BMB Reports 2023; 56(3): 184-189].
Assuntos
Ferroptose , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Circular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Ferroptose/genética , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Sistema y+ de Transporte de Aminoácidos/genéticaRESUMO
BACKGROUND: Previous studies on acute exacerbation of chronic obstructive pulmonary disease (AECOPD) have found that those who died in hospital had higher blood urea nitrogen levels and a worse nutritional status compared to survivors. However, the association between the blood urea nitrogen to serum albumin ratio (BUN/ALB ratio) and in-hospital and short-term prognosis in patients with AECOPD remains unclear. The aim of this study was to explore the usefulness of BUN/ALB ratio in AECOPD as an objective predictor for in-hospital and 90-day all-cause mortality. METHODS: We recorded the laboratory and clinical data in patients with AECOPD on admission. By drawing the ROC curve for the patients, we obtained the cut-off point for the BUN/ALB ratio for in-hospital death. Multivariate logistic regression was used for analyses of the factors of in-hospital mortality and multivariate Cox regression was used to analyze the factors of 90-day all-cause mortality. RESULTS: A total of 362 patients were recruited and 319 patients were finally analyzed. Twenty-three patients died during hospitalization and the fatality rate was 7.2%. Furthermore, 14 patients died by the 90-day follow-up. Compared with in-hospital survivors, patients who died in hospital were older (80.78 ± 6.58 vs. 75.09 ± 9.73 years old, P = 0.001), had a higher prevalence of congestive heart failure(69.6% vs. 27.4%, P < 0.001), had a higher BUN/ALB ratio [0.329 (0.250-0.399) vs. 0.145 (0.111-0.210), P < 0.001], had higher neutrophil counts [10.27 (7.21-14.04) vs. 6.58 (4.58-9.04), P < 0.001], higher blood urea nitrogen levels [10.86 (7.10-12.25) vs. 5.35 (4.14-7.40), P < 0.001], a lower albumin level (32.58 ± 3.72 vs. 36.26 ± 4.53, P < 0.001) and a lower lymphocyte count [0.85 (0.58-1.21) vs. 1.22 (0.86-1.72), P = 0.001]. The ROC curve showed that the area under the curve (AUC) of BUN/ALB ratio for in-hospital death was 0.87, (95%CI 0.81-0.93, P < 0.001), the best cut-off point value to discriminate survivors from non-survivors in hospital was 0.249, the sensitivity was 78.3%, the specificity was 86.5%, and Youden's index was 0.648. Having a BUN/ALB ratio ≥ 0.249 was an independent risk factor for both in-hospital and 90-day all-cause mortality after adjustment for relative risk (RR; RR = 15.08, 95% CI 3.80-59.78, P < 0.001 for a multivariate logistic regression analysis) and hazard ratio (HR; HR = 5.34, 95% CI 1.62-17.57, P = 0.006 for a multivariate Cox regression analysis). CONCLUSION: An elevated BUN/ALB ratio was a strong and independent predictor of in-hospital and 90-day all-cause mortality in patients with AECOPD.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Albumina Sérica , Humanos , Idoso , Idoso de 80 Anos ou mais , Nitrogênio da Ureia Sanguínea , Mortalidade Hospitalar , Estudos Retrospectivos , Curva ROC , Prognóstico , HospitaisRESUMO
In the past decade, selenocyclization has been extensively exploited for the preparation of a wide range of selenylated heterocycles with versatile activities. Previously, selenium electrophile-based and FeCl3-promoted methods were employed for the synthesis of selenylated benzoxazines. However, these methods are limited by starting material availability and low atomic economy, respectively. Inspired by the recent catalytic selenocyclization approaches based on distinctive pathways, we rationally constructed an efficient and greener double-redox catalytic system for the access to diverse selenylated benzoxazines. The coupling of I2/I- and Fe3+/Fe2+ catalytic redox cycles enables aerial O2 to act as the driving force to promote the selenocyclization. Control and test redox experiments confirmed the roles of each component in the catalytic system, and a PhSeI-based pathway is proposed for the selenocyclization process.
Assuntos
Oxigênio , Selênio , Oxigênio/metabolismo , Benzoxazinas , Oxirredução , CatáliseRESUMO
OBJECTIVE: Ovarian cancer (OC) is one of the common gynecological malignant tumors. Cell division cycle-associated protein-3 (CDCA3) is involved in the regulation of cell cycle progression. The role of CDCA3 in OC was explored in this study. METHODS: The expression of CDCA3 in OC was evaluated in the Gene Expression Omnibus (GEO) database and further verified by qRT-PCR and Western blot (WB). Subsequently, we established lentivirus-mediated CDCA3 knockdown in OC cell lines HO-8910 and A2780. The biological roles of CDCA3 on proliferation, sensitivity to cisplatin, apoptosis, migration and tumor formation of OC were investigated using loss-of-function assays. RESULTS: CDCA3 was frequently up-regulated in OC. Knockdown of CDAC3 inhibited proliferation and migration, and enhanced apoptosis as well as sensitivity of OC cells to cisplatin. In vivo results further confirmed the inhibitory effect of CDCA3 knockdown on tumor growth. CONCLUSIONS: Our findings indicated that CDCA3 may play an important role in OC progression, and may serve as a potential therapeutic target for the OC treatment.