Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 240: 120081, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224667

RESUMO

Pore wetting induced by surfactants and salt scaling is a major obstacle to the industrial application of membrane distillation (MD). Identifying the transition of wetting stages and achieving early monitoring of pore wetting are crucial for wetting control. Herein, we made a pioneering attempt to use ultrasonic time-domain reflectometry (UTDR) technique to non-invasively detect the pore wetting in a direct contact MD, and explain the UTDR waveform with the help of optical coherence tomography (OCT) imaging. The results showed that the water-vapor interface had a strong reflection to ultrasound (reflection coefficient = 0.9995), while the water-membrane and water-scaling layer interfaces showed relatively weak reflection. Therefore, UTDR could effectively detect the movement of water-vapor interface with the low interference from the signals generated by the membrane and scaling layer. For the surfactant-induced wetting, the occurrence of wetting could be successfully detected by the right-shift in phase and the reduction in amplitude of the UTDR waveform. Moreover, the wetting depth could be accurately calculated by the time of flight (ToF) and ultrasonic velocity. For scaling-induced wetting, the waveform slightly shifted to the left at the beginning due to the growth of scaling layer, then to the right because the left-shift was surpassed by the right-shift of the waveform caused by pore wetting. Both for the surfactant- and scaling-induced wetting, the variation of the UTDR waveform was sensitive to wetting dynamics, and the right-shift of phase and the reduction in amplitude of the waveform could act as early monitoring signals to the occurrence of wetting.


Assuntos
Ultrassom , Purificação da Água , Purificação da Água/métodos , Membranas Artificiais , Água , Vapor
2.
Water Res ; 237: 119984, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37099871

RESUMO

Janus membranes with asymmetric wettability have attracted wide attentions for their robust anti-oil-wetting/fouling abilities in membrane distillation (MD). Compared to traditional surface modification approaches, in this study, we provided a new approach which manipulated surfactant-induced wetting to fabricate Janus membrane with a controllable thickness of the hydrophilic layer. The membranes with 10, 20, and 40 µm of wetted layers were obtained by stopping the wetting induced by 40 mg L-1 Triton X-100 (J = 25 L m-2 h-1) at about 15, 40, and 120 s, respectively. Then, the wetted layers were coated using polydopamine (PDA) to fabricate the Janus membranes. The resulting Janus membranes showed no significant change in porosities or pore size distributions compared with the virgin PVDF membrane. These Janus membranes exhibited low in-air water contact angles (< 50°), high underwater oil contact angles (> 145°), and low adhesion with oil droplets. Therefore, they all showed excellent oil-water separation performance with ∼100% rejection and stable flux. The Janus membranes showed no significant decline in flux, but a trade-off existed between the hydrophilic layer thicknesses and the vapor flux. Utilizing membranes with tunable hydrophilic layer thickness, we elucidated the underlying mechanism of such trade-off in mass transfer. Furthermore, the successful modification of membranes with different coatings and in-situ immobilization of silver nanoparticles indicated that this facile modification method is universal and can be further expanded for multifunctional membrane fabrication.


Assuntos
Nanopartículas Metálicas , Purificação da Água , Molhabilidade , Destilação/métodos , Membranas Artificiais , Purificação da Água/métodos , Prata , Água
3.
Environ Sci Technol ; 56(20): 14788-14796, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36154007

RESUMO

Scaling-induced wettinggreatly limits the application of membrane distillation (MD) for the desalination of high-salinity feed. Although highly soluble salts (e.g., NaCl) have high concentrations in this water, their scaling-induced wetting remains overlooked. To unravel the elusive wetting behaviors of highly soluble salts, in this study, we systematically investigated the scaling formation and wetting progress by in situ observation with optical coherence tomography (OCT). Through examining the influence of salt type and vapor flux on the wetting behavior, we revealed that highly soluble salt-induced wetting, especially under high vapor flux, shared several unique features: (1) occurring before the bulk feed reached saturation, (2) no scale layer formation observed, and (3) synchronized wetting progress on the millimeter scale. We demonstrated that a moving scale layer caused these interesting phenomena. The initial high vapor flux induced high concentration and temperature polarizations, which led to crystallization at the gas-liquid interface and the formation of an initial scale layer. On the one hand, this scale layer bridged the water into the hydrophobic pores; on the other hand, it blocked the membrane pores and reduced the vapor flux. In this way, the decreased vapor flux mitigated the concentration/temperature polarizations, and consequently led to the dissolution of the feed-facing side of the scale layer. This dissolution prevented the membrane pores from being completely blocked, facilitating the transportation and crystallization of salts at the distillate-facing side of the scale layer (i.e., the gas-liquid interface), thus the proceeding of the wetting layer.


Assuntos
Destilação , Purificação da Água , Destilação/métodos , Membranas Artificiais , Sais/química , Cloreto de Sódio , Cloreto de Sódio na Dieta , Água , Purificação da Água/métodos
4.
Chemosphere ; 240: 124860, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31542578

RESUMO

In order to increase the adsorption properties of sodium alginate gel beads, a series of SA@PF-beads (sodium alginate-based beads with different amount of pore-forming agent) were prepared with calcium carbonate as the pore forming agent. The experimental results showed that the adsorption capacity of Cu(Ⅱ) increased by at least two times (from 13.69 mg/g to 33.88 mg/g, treated with SA@PF-0 and SA@PF-2.0, respectively) with proper amount of calcium carbonate added, which is economical and effective. In the experiment, SEM was used to measure the morphology of gel beads with different amount of pore-forming agent. FTIR and XPS were used to analyze the variation of functional groups and bond energies in the adsorption process. Adsorption isotherms and kinetics were conducted and showed that the adsorption process was consistent with Langmuir model and Elovich kinetic model. The maximum Langmuir adsorption 229.746 mg/g. The effects of pH, temperature and solid-liquid ratio on adsorption capacity were also investigated. In brief, calcium carbonate is an efficient and convenient pore-forming agent, which can be used to improve the adsorption properties of alginate gel materials.


Assuntos
Alginatos/química , Cobre/isolamento & purificação , Microesferas , Adsorção , Carbonato de Cálcio/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Poluentes Químicos da Água/isolamento & purificação
5.
Chemosphere ; 240: 124945, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726594

RESUMO

In this study, the effect of high concentration of Mn2+ on the aerobic granular sludge (AGS) systems for aniline wastewater treatment was systematically investigated in terms of AGS formation and pollutant removal efficiency. Two parallel sequencing batch reactors were operated to treat the aniline-rich wastewater with and without 20 mg L-1 of Mn2+. In the presence of Mn2+, the time to granulation was prolonged from 23 d to 30 d due to the toxicity of the high concentration of Mn2+. However, the mature granules with Mn2+ produced more protein and polysaccharides, and had a larger size (870 µm) than that without Mn2+ (740 µm). The extracellular polymeric substances of the granules in the two reactors had similar protein compositions, but some functional groups increased with Mn2+. The reactors showed high overall removal efficiency of chemical oxygen demand, NH4+-N, and total nitrogen with average concentrations below 40, 1.0, and 19 mg L-1, respectively, in the effluents. In one typical operating cycle, however, Mn2+ retarded nitrification and the degradation of aniline, while promoted denitrification. The microbial community analysis revealed that the growth of Terrisporobacter, Pseudomonas, and many other bacteria responsible for aniline degradation was inhibited by Mn2+, and so were the strains involved in nitrification. In contrast, Mn2+ facilitated the growth of denitrifying bacteria.


Assuntos
Compostos de Anilina/toxicidade , Manganês/toxicidade , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/toxicidade , Aerobiose , Compostos de Anilina/metabolismo , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Desnitrificação , Microbiota , Nitrificação , Nitrogênio/análise , Esgotos/química , Águas Residuárias/química
6.
Water Res ; 159: 95-101, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078756

RESUMO

Due to the lack of robust ways to quantify aggregations, fouling of two-foulant aggregations is poorly understood. This work systematically reports the ultrafiltration membrane fouling by aggregations formed from two oppositely charged organic foulants (i.e., humic acid (HA) and lysozyme (LYS)) with the aid of resonance light scattering (RLS) technique. RLS provides an effective approach to detecting the aggregation concentration and reveals that the HA-LYS aggregations were formed at a mass ratio of m(LYS)/m(HA) = 2.77. During the filtration of the mixture of HA and LYS, aggregations over individual foulants were identified to be the main substances deposited on the membrane surface, where the mass of deposition had a good linear relationship with the feed concentration of the aggregations. The HA-LYS aggregations might decrease the total fouling due to their large size, but reduce the fouling reversibility. In the pH range of 5.5-9.2, the pH value had limiting effects on the concentration of HA-LYS aggregations, as well as the consequent fouling. At low ionic strength, the membrane fouling by HA-LYS aggregations decreased as the ionic strength increased due to the reduction of the aggregation concentration. Oppositely, at high ionic strength, this tendency was reversed due to the electrical double layer compression effect. These results suggest that RLS is a simple and effective way to quantify the aggregations of foulants, and the aggregations of foulants have distinct fouling behaviors compared with the individual foulants.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração , Substâncias Húmicas , Concentração Osmolar , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA