Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Microorganisms ; 12(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38399720

RESUMO

Oil-based drilling cuttings (OBDCs) contain petroleum hydrocarbons with complex compositions and high concentrations, which have highly carcinogenic, teratogenic, and mutagenic properties. In this study, three highly efficient petroleum hydrocarbon-degrading bacteria were screened from OBDCs of different shale gas wells in Chongqing, China, and identified as Rhodococcus sp. and Dietzia sp. Because of their ability to degrade hydrocarbons of various chain lengths, a new method was proposed for degrading petroleum hydrocarbons in shale gas OBDCs by combining different bacterial species. Results showed that the bacterial consortium, consisting of the three strains, exhibited the highest degradation rate for petroleum hydrocarbons, capable of degrading 74.38% of long-chain alkanes and 93.57% of short-chain alkanes, respectively. Moreover, the petroleum hydrocarbon degradation performance of the bacterial consortium in actual OBDCs could reach 90.60% in the optimal conditions, and the degradation kinetic process followed a first-order kinetic model. This study provides a certain technical reserve for the bioremediation of shale gas OBDCs.

2.
Environ Sci Pollut Res Int ; 28(33): 45144-45154, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33864218

RESUMO

The photo-oxidation of arsenite (As(III)) in solution containing Suwannee River fulvic acid (SRFA) under the ultraviolet A (UVA) irradiation (λmax = 365 nm) was studied. In a solution containing 100.0 µg·L-1 As(III) and 10.0 mg·L-1 SRFA at pH 3.0, SRFA induced As(III) photo-oxidation by producing the triplet excited state of SRFA (3SRFA*) and hydroxyl radical(HO˙). Approximately 82% of As(III) oxidation was attributed to HO˙ which depended strongly on HO2˙/O2˙-. The remaining 18% of As(III) oxidation was attributed to the direct reaction between As(III) and 3SRFA*. The photo-oxidation of As(III) was significantly affected by solution pH. Excess SRFA inhibited As(III) photo-oxidation. The addition of a low concentration of ferric ions retarded the photo-oxidation of As(III) due to the poor photo-activity of Fe(III)-SRFA complexes. In contrast, the addition of ferric ions at high concentration greatly accelerated As(III) photo-oxidation because of the high photo-activity of Fe(III)-OH complexes. The fractions of SRFA with different molecular weight showed different oxidizing capacities under UV irradiation which was possibly related to the different contents of phenolic OH groups. The findings have important environmental implications for the photo-transformation behavior of As(III) in natural surface waters containing dissolved organic matter, especially acidic waters.


Assuntos
Arsenitos , Rios , Benzopiranos , Compostos Férricos , Radical Hidroxila , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA