Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 27(3): 352-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333750

RESUMO

Objectives: Mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage and mutation is widely accepted as one of the pathological processes of neurodegenerative diseases. As an mtDNA binding protein, mitochondrial transcription factor A (TFAM) maintains the integrity of mtDNA through transcription, replication, nucleoid formation, damage perception, and DNA repair. In recent works, the overexpression of TFAM increased the mtDNA copy count, promoted mitochondrial function, and improved the neurological dysfunction of neurodegenerative diseases. The role of TFAM in neurodegenerative diseases has been well explained. However, the role of TFAM after surgical brain injury (SBI) has not been studied. In this work, we aimed to study the role of TFAM in the brain after SBI and its mechanism of action. Materials and Methods: One hour after the occurrence of SBI, tetramethylpyrazine (TMP) was injected into the abdominal cavity of rats, and the brain was collected 48 hr later for testing. The evaluation included neurobehavioral function test, brain water content measurement, immunofluorescence, western blot, TUNEL staining, FJC staining, ROS test, and ATP test. Results: After SBI, the content of TFAM on the ipsilateral side increased and reached a peak at about 48 hr. After intraperitoneal injection of TMP in rats, 48 hr after SBI, the concentration of TFAM, Bcl-2, and adenosine triphosphate (ATP) increased; the content of caspase-3, reactive oxygen species (ROS), and cerebral edema decreased; and the nerve function significantly improved. Conclusion: TMP inhibited cell apoptosis after SBI in rats by up-regulating TFAM and protecting brain tissues.

2.
Iran J Basic Med Sci ; 27(1): 49-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164484

RESUMO

Objectives: Liver injury and hyperlipidemia are major issues that have drawn more and more attention in recent years. The present study aimed to investigate the effects of unacylated ghrelin (UAG) on acute liver injury and hyperlipidemia in mice. Materials and Methods: UAG was injected intraperitoneally once a day for three days. Three hours after the last administration, acute liver injury was induced by intraperitoneal injection of carbon tetrachloride (CCl4), and acute hyperlipidemia was induced by intraperitoneal injection of poloxamer 407, respectively. Twenty-four hours later, samples were collected for serum biochemistry analysis, histopathological examination, and Western blotting. Results: In acute liver injury mice, UAG significantly decreased liver index, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), reduced malondialdehyde (MDA) concentration and increased superoxide dismutase(SOD) in liver tissue. NF-kappa B (NF-κB) protein expression in the liver was down-regulated. In acute hyperlipidemia mice, UAG significantly decreased serum total cholesterol (TC), triglyceride (TG), ALT, and AST, as well as hepatic TG levels. Meanwhile, hepatic MDA decreased and SOD increased significantly. Moreover, UAG improved the pathological damage in the liver induced by CCl4 and poloxamer 407, respectively. Conclusion: Intraperitoneal injection of UAG exhibited hepatoprotective and lipid-lowering effects on acute liver injury and hyperlipidemia, which is attributed to its anti-inflammatory and anti-oxidant activities.

3.
Int J Mol Med ; 52(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888730

RESUMO

Traumatic brain injury (TBI) can lead to the disruption of endoplasmic reticulum (ER) homeostasis in neurons and induce ER stress. Transmembrane protein 2 (TMEM2) may regulate ER stress through the p38/ERK signaling pathway, independent of the classic unfolded protein response (UPR) pathway. The present study examined the expression of TMEM2 following TBI in a rat model, in an aim to determine whether the mitogen­activated protein kinase (MAPK) signaling pathway is controlled by TMEM2/CD44 to mitigate secondary brain injury. For this purpose, 89 Sprague­Dawley rats were used to establish the model of TBI, and TMEM2 siRNA was used to silence TMEM2. Western blot analysis, immunofluorescence, TUNEL assay and Fluoro­Jade C staining, the wet­dry method and behavioral scoring were used for analyses. The results revealed that TMEM2 was activated following TBI in rats. The silencing of TMEM2 resulted in a significant increase in the levels of p38 and ERK (components of MAPK signaling), while brain edema, neuronal apoptosis and degeneration were significantly aggravated. TBI increased TMEM2/CD44­aggravated brain edema and neurological impairment, possibly by regulating ERK and p38 signaling. TMEM2/CD44 may thus be a target for the prevention and control of TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Estresse do Retículo Endoplasmático , Receptores de Hialuronatos , Proteínas de Membrana , Animais , Ratos , Apoptose/genética , Edema Encefálico/metabolismo , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Ratos Sprague-Dawley , Receptores de Hialuronatos/metabolismo , Proteínas de Membrana/metabolismo
4.
Clin Exp Pharmacol Physiol ; 50(12): 927-935, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37675456

RESUMO

Ferroptosis is a recently discovered non-apoptotic form of cellular death. Acyl-CoA synthetase long-chain family number 4 (ACSL4) is necessary for iron-dependent cellular death, and reactive oxygen species (ROS) produced by ACSL4 are the executioners of ferroptosis. Rosiglitazone improves ferroptosis by inhibiting ACSL4. There is no research indicating whether ACSL4 plays a role in cell death after surgical brain injury (SBI). This study aimed to investigate the role of ACSL4 in SBI via the ferroptosis pathway. Ninety male Sprague-Dawley rats were examined using a model of SBI. Subsequently, the inhibitory effect of rosiglitazone on ACSL4 was assessed via western blot, real-time polymerase chain reaction (PCR), immunofluorescence, fluoro-jade C staining, Perl's staining, ROS assay, and neurological scoring. The results showed that compared with the Sham group, the protein levels of ACSL4 and transferrin were significantly increased after SBI. Administration of rosiglitazone significantly reduced neuronal necrosis, iron deposition, brain water content and ROS in brain tissue and ameliorated neurological deficits at 48 h after SBI, which was concomitant with decreased transferrin expression. These findings demonstrate that SBI-induced upregulation of ACSL4 may be partly mediated by the ferroptosis pathway, which can be reversed by rosiglitazone administration.


Assuntos
Lesões Encefálicas , Neoplasias Encefálicas , Ratos , Masculino , Animais , Rosiglitazona/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Encéfalo/metabolismo , Lesões Encefálicas/tratamento farmacológico , Ferro , Transferrinas/metabolismo , Ligases/metabolismo
5.
Heliyon ; 9(7): e18160, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539293

RESUMO

Histone deacetylase 3 (HDAC3) restores chromatin nucleosomes to a transcriptional repression state, thereby inhibiting gene expression. Studies have found that HDAC3 expression is upregulated in a variety of pathological states of the central nervous system and related to its neurotoxicity. However, the role of HDAC3 in surgical brain injury (SBI) has not been thoroughly explored. OBJECTIVE: To observe the role of HDAC3 in SBI and the outcome of SBI after its suppression. METHODS: Rat SBI model was used, and intraperitoneal injection of RGFP966 (HDAC3 specific inhibitor) was used to detect the changes of HDAC3 expression and neuronal apoptosis indexes in the surrounding cortex of SBI rats, and the cerebral edema and neurological outcome of rats were observed. RESULTS: The expression of HDAC3 in the peripheral cortex of SBI rats was increased, and RGFP966 inhibited the upregulation of HDAC3 and saved the nerve cells around the damaged area. In addition, RGFP966 increased the expression of anti-oxidative stress proteins such as heme oxygenase-1 (HO-1) and superoxide dismutase 2 (SOD2). At the same time, the expression of apoptotic marker protein cleaved-caspase-3 (cle-caspase-3) was decreased, while the expression level of apoptotic protective marker protein B-cell lymphoma 2 (Bcl-2) was increased. In addition, this research demonstrated that in the RGFP966 rat SBI model, the expression level of antioxidant modifier nuclear factor-erythroid 2-related factor 2 (Nrf2) was increased. CONCLUSION: RGFP966 might activate HDAC3/Nrf2 signaling pathway by inhibiting HDAC3, regulated oxidative stress and nerve cell apoptosis induced by SBI in rat SBI model, reduced brain edema, and had a protective effect on nerve injury. It might be a potential target of SBI pathology.

6.
Pharmgenomics Pers Med ; 16: 153-172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908806

RESUMO

Background: The incidence of cutaneous melanoma continues to rise rapidly and has an extremely poor prognosis. Immunotherapy strategies are the most effective approach for patients who have developed metastases, but not all cases have been successful due to the complex and variable mechanisms of melanoma response to immune checkpoint inhibition. Methods: We synthesized collagen-coding gene expression data (second-generation and single-cell sequencing) from public Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatics analysis was performed using R software and several database resources such as Metascape database, Gene Set Cancer Analysis (GSCA) database, and Cytoscape software, etc., to investigate the biological mechanisms that may be related with collagens. Immunofluorescence and immunohistochemical staining were used to validate the expression and localization of Nidogen-2 (NID2). Results: Melanoma patients can be divided into two collagen clusters. Patients with high collagen levels (C1) had a shorter survival than those with low collagen levels (C2) and were less likely to benefit from immunotherapy. We demonstrated that NID2 is a potential key factor in the collagen phenotype, is involved in fibroblast activation in melanoma, and forms a barrier to limit the proximity of CD8+ T cells to tumor cells. Conclusion: We clarified the adverse effects of collagen on melanoma patients and identified NID2 as a potential therapeutic target.

7.
Exp Ther Med ; 24(6): 728, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36382093

RESUMO

Blood-brain barrier (BBB) damage is closely related to morbidity and mortality in patients with traumatic brain injury (TBI). Inhibition of VEGF effectively protects BBB integrity in clinical ischemic stroke. Protecting BBB integrity, reducing brain edema and alleviating post-TBI secondary brain injury are key to a favorable patient prognosis. MMP-9 affects BBB integrity by destroying the tight junction of vascular endothelial cells and inhibiting the transport and enzymatic systems. The present study aimed to examine the possible interplay between VEGF and MMP-9 in TBI. A TBI model was established in 87 male Sprague-Dawley rats. Reverse transcription-quantitative PCR, western blotting, wet-dry brain edema assessment, TUNEL and Fluoro-Jade C staining were performed to analyze the brain tissue samples of the rats. The results showed that compared with in the Sham group rats, the mRNA and protein expression levels of VEGF and MMP-9 were increased at 24 h post-TBI. After bevacizumab treatment, BBB permeability and nerve cell apoptosis were markedly reduced. In conclusion, the present study revealed a potential role for TBI-associated VEGF and MMP-9 upregulation in BBB disruption and nerve damage post-TBI.

8.
Iran J Basic Med Sci ; 25(9): 1117-1122, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36246070

RESUMO

Objectives: Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of clinical metabolic syndrome. Insulin resistance is an important factor in the pathogenesis of NAFLD. Ghrelin, widely distributed in peripheral tissues and the central nervous system, plays a vital role in regulating food intake, energy balance, and substance metabolism. In this study, the effect of intracerebroventricular (ICV) injection of ghrelin receptor antagonist on NAFLD was explored. Materials and Methods: A rat model of NAFLD was established by feeding a high-fat diet, and a selective ghrelin receptor antagonist [D-Lys-3]-GHRP-6 was injected via ventricular intubation implantation. The serum total cholesterol (TC), triglycerides (TGs), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and hepatic TGs were measured using the colorimetric method. Fasting plasma glucose (FPG) and fasting plasma insulin (FPI) were determined to calculate homeostatic model assessment insulin resistance (HOMA-IR). Hematoxylin-eosin (HE) and Oil Red O staining were conducted to observe the pathological changes and lipid accumulation in the liver. Hosphatidylinositide3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway protein expressions were measured using western blot analysis. Results: ICV injection of [D-Lys-3]-GHRP-6 significantly reduced serum lipids, transaminase, and HOMA-IR, improved liver injury, and inhibited lipid accumulation in the liver of NAFLD rats. Moreover, ICV injection of [D-Lys-3]-GHRP-6 significantly up-regulated the phosphorylation levels of PI3K/Akt/mTOR signaling protein expressions in the hypothalamus, indicating a significant improvement in hypothalamic insulin resistance. Conclusion: Blockade of central ghrelin receptor can treat NAFLD possibly via the hypothalamic PI3K/Akt/mTOR signaling pathway to improve insulin resistance.

9.
Brain Res Bull ; 183: 116-126, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247489

RESUMO

Surgical brain injury (SBI) is unavoidable in neurosurgery, and could aggravate secondary brain injury. Post-brain injury, multiple inflammatory factors are released, resulting in neuroinflammation and cell apoptosis, with subsequent brain edema and nerve function injury. TREM2, an immune protein mainly expressed in microglia, is an important link for nerve cells to participate in the inflammatory response. TREM2 and nuclear factor кB (NF-кB) are indeed closely associated with the release of inflammatory cytokines following brain injury. This work aimed to determine the inflammatory function of TREM2 in SBI, and to investigate whether TREM2 regulates interleukin-1 beta (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) release through the NF-кB p65 signaling pathway. We established a rat model of SBI, and performed Western blotting (WB), immunofluorescence (IF) and enzyme-linked immunosorbent assay (ELISA) for further analysis. Next, brain edema and neurological score analyses were performed. Finally, whether TREM2 regulating NF-кB p65 signaling affects blood-brain barrier (BBB) permeability and nerve cell apoptosis was examined. We found that post-SBI, TREM2 was upregulated, and inflammation and brain injury were aggravated. After TREM2 downregulation, NF-кB p65 production, inflammation and brain injury were enhanced, suggesting that TREM2 may play a protective role by inhibiting NF-кB p65 production after SBI. Overall, these findings suggest that TREM2 in SBI may have protective effects on postoperative nerve and BBB damage, possibly in part via the NF-κB p65 pathway.


Assuntos
Barreira Hematoencefálica , NF-kappa B , Animais , Apoptose , Barreira Hematoencefálica/metabolismo , Regulação para Baixo , NF-kappa B/metabolismo , Ratos , Transdução de Sinais
10.
J Am Chem Soc ; 144(7): 2853-2860, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35143204

RESUMO

A new type of chiral super Brønsted C-H acids, BINOL-derived phosphoryl bis((trifluoromethyl)sulfonyl) methanes (BPTMs), were developed. As compared to widely utilized BINOL-derived chiral phosphoric acids (BPAs) and N-triflyl phosphoramides (NTPAs), BPTMs displayed much higher Brønsted acidity, resulting in dramatically improved activity and excellent enantioselectivity as demonstrated in catalytic asymmetric Mukaiyama-Mannich reaction, allylic amination, three-component coupling of allyltrimethylsilane with 9-fluorenylmethyl carbamate and aldehydes, and protonation of silyl enol ether. These new strong Brønsted C-H acids have provided a platform for expanding the chemistry of asymmetric Brønsted acid catalysis.

11.
Am J Transl Res ; 13(11): 12626-12637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956478

RESUMO

BACKGROUND: Psoriasis is a systemic inflammatory disease characterized by epidermal hyperplasia and skin inflammatory infiltrates. Inactivation of AMPK has been shown to decrease autophagy, thereby inhibiting elimination of inflammatory factors and harmful substances, and aggravating psoriasis. However, the molecular mechanism through which AMPK affects psoriasis remains to be further explored. In this study, we investigated whether AMPK regulates autophagy through the ULK1/Atg7 signaling pathway and regulates mitochondrial autophagy through the PINK1/Parkin signaling pathway, thereby affecting a mouse model of psoriasis. METHODS: Imiquimod was used to induce psoriasis-like lesions on the backs of mice. The severity of skin lesions in psoriatic mice was evaluated with the skin inflammation severity score, and epidermal thickness was measured on the basis of H&E staining. RT-PCR, western blotting and immunofluorescence staining were used to detect indicators of autophagy and mitochondrial autophagy. RESULTS: AMPK activity was inhibited in the psoriasis mouse model, the autophagy-associated proteins ULK1/Atg7 were inhibited, and the mitochondrial autophagy proteins PINK1/Parkin were also decreased. Results indicated that autophagy and mitochondrial autophagy were inhibited in the mouse model. When AMPK signaling was upregulated, ULK1/Atg7 and PINK1/Parkin were upregulated, autophagy and mitochondrial autophagy increased, and skin lesions in the mouse model were alleviated. ULK1/Atg7 and PINK1/Parkin were down-regulated when AMPK signaling was downregulated, and psoriasis-like skin lesions were aggravated in mice. These results indicated that AMPK regulates autophagy through the ULK1/Atg7 signaling pathway and regulates mitochondrial autophagy through the PINK1/Parkin signaling pathway, thus affecting the prognosis of psoriasis in the mouse model. CONCLUSION: AMPK affects the prognosis of psoriasis in a mouse model by regulating autophagy and mitochondrial autophagy.

12.
Mol Med Rep ; 24(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34396440

RESUMO

Surgical brain injury (SBI) can disrupt the function of the blood­brain barrier (BBB), leading to brain edema and neurological dysfunction. Thus, protecting the BBB and mitigating cerebral edema are key factors in improving the neurological function and prognosis of patients with SBI. The inhibition of WNK lysine deficient protein kinase/STE20/SPS1­related proline/alanine­rich kinase (SPAK) signaling ameliorates cerebral edema, and this signaling pathway regulates the phosphorylation of the downstream Na+­K+­Cl­ cotransporter 1 (NKCC1). Therefore, the purpose of the present study was to investigate the role of SPAK in SBI­induced cerebral edema and to determine whether the SPAK/NKCC1 signaling pathway was involved in SBI via regulating phosphorylation. An SBI model was established in male Sprague­Dawley rats, and the effects of SPAK on the regulation of the NKCC1 signaling pathway on BBB permeability and nerve cell apoptosis by western blotting analysis, immunofluorescence staining, TUNEL staining, Fluoro­Jade C staining, and brain edema and nervous system scores. The results demonstrated that, compared with those in the sham group, phosphorylated (p)­SPAK and p­NKCC1 protein expression levels were significantly increased in the SBI model group. After inhibiting p­SPAK, the expression level of p­NKCC1, neuronal apoptosis and BBB permeability were significantly reduced in SBI model rats. Taken together, these findings suggested that SBI­induced increases in p­SPAK and p­NKCC1 expression exacerbated post­traumatic neural and BBB damage, which may be mediated via the ion­transport­induced regulation of cell edema.


Assuntos
Apoptose/efeitos dos fármacos , Barreira Hematoencefálica , Lesões Encefálicas/metabolismo , Substâncias Protetoras/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Animais , Encéfalo , Edema Encefálico/metabolismo , Modelos Animais de Doenças , Masculino , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , Membro 2 da Família 12 de Carreador de Soluto/genética
13.
Front Mol Neurosci ; 14: 641993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867933

RESUMO

Surgical brain injury (SBI) triggers microglia to release numerous inflammatory factors, leading to brain edema and neurological dysfunction. Reducing neuroinflammation and protecting the blood-brain barrier (BBB) are key factors to improve the neurological function and prognosis after SBI. Na+-K+-Cl- cotransporter 1 (NKCC1) and nuclear factor κB (NF-κB) have been implicated in the secretion of inflammatory cytokines by microglia in brain injury. This study aimed to establish the role of NKCC1 in inducing inflammation in SBI, as well as to determine whether NKCC1 controls the release of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) via phosphorylation of NF-κB in microglia, thus affecting BBB permeability and neuronal cell apoptosis. Male Sprague-Dawley (SD) rats were used to establish an SBI model. This study revealed that compared with the sham group, the expression levels of p-NKCC1, p-p65-NF-κB, and related inflammatory factor proteins in SBI model group significantly increased. After p-NKCC1 was inhibited, p-p65-NF-κB, IL-6, IL-1ß, and TNF-α were downregulated, and nerve cell apoptosis and BBB permeability were significantly reduced. These findings suggest that the SBI-induced increase in p-NKCC1 exacerbates neuroinflammation, brain edema, and nerve function injury, which may be mediated by regulating the activity of p65-NF-κB that in turn influences the release of inflammatory factors.

14.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760209

RESUMO

With­no­lysine kinase 3 (WNK3) is a serine/threonine kinase that functions by regulating downstream signaling molecules. WNK3 mainly regulates intracellular and extracellular Na+, Cl­ and K+ levels by regulating downstream ion transporters, the disruption of which has been associated with cerebral ischemia, epilepsy, glioma and other diseases. In addition, WNK3 was demonstrated to regulate neuronal splicing factor RNA binding fox­1 homolog­1 to influence autism. Over the past 20 years, accumulating evidence has reported that dysfunctional WNK3 signaling was involved in the pathologies of various neurological disorders; therefore, WNK3 has become a promising therapeutic target for ameliorating the corresponding symptoms of such disorders. The present review aimed to provide a general overview of the expression patterns and physiological functions of WNK3 signaling and its pathophysiological roles in neurological diseases, such as epilepsy, ischemic brain injury, intracerebral hemorrhage, autism, glioma and schizophrenia.


Assuntos
Hemorragia Cerebral/genética , Transporte de Íons/genética , Doenças do Sistema Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Hemorragia Cerebral/patologia , Epilepsia/genética , Epilepsia/patologia , Humanos , Doenças do Sistema Nervoso/patologia , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/genética
15.
Front Surg ; 8: 749310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071308

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is considered as a potential target for the treatment of Parkinson's disease. This protein is expressed in the brain and has been associated with various diseases and lysosomal maintenance. Rab10 is a member of the Rab protein GTPase family that has been recently shown to be a kinase substrate of LRRK2. In addition, LRRK2 and its kinase substrate Rab10 constitute a key stress response pathway during lysosomal overload stress. This study aimed to investigate the potential role and mechanism underlying LRRK2 and its kinase substrate Rab10 involving surgical brain injury (SBI). One hundred and forty-four male Sprague-Dawley rats were examined using an SBI model, and some had received the LRRK2-specific inhibitor PF-06447475. Thereafter, western blotting, immunofluorescence, brain water content analysis, neuronal apoptosis assay, and neurological score analysis were conducted. The results showed that after SBI, LRRK2 and phosphorylated Rab10 (p-Rab10) expression in neuronal cells were upregulated, and administration of PF-06447475 significantly reduced neuronal apoptosis, neuroinflammation, and brain water content 12 h after SBI and improved neurological deficit 72 h after SBI, which is related to the decreased expression of LRRK2 and p-Rab10, and the lessening of lysosomal overload stress. Our research suggests that the inhibition of LRRK2 can effectively interfere with the role of p-Rab10 in promoting the secretion of lysosomal hydrolase in lysosomal overload stress after SBI, thereby reducing neuronal apoptosis and inflammation after SBI and playing a major role in brain protection.

16.
Am J Transl Res ; 13(12): 13273-13297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35035675

RESUMO

Transmembrane protein family members (TMEMs) span the entire lipid bilayer and act as channels that allow the transport of specific substances through biofilms. The functions of most TMEMs are unexplored. Numerous studies have shown that TMEMs are involved in the pathophysiological processes of various nervous system diseases, but the specific mechanisms of TMEMs in the pathogenesis of diseases remain unclear. In this review, we discuss the expression, physiological functions, and molecular mechanisms of TMEMs in brain tumors, psychiatric disorders, abnormal motor activity, cobblestone lissencephaly, neuropathic pain, traumatic brain injury, and other disorders of the nervous system. Additionally, we propose that TMEMs may be used as prognostic markers and potential therapeutic targets in patients with various neurological diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA