Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Pept Lett ; 17(1): 1-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20214626

RESUMO

The region (101-112) of C1B domain in PKC gamma plays a crucial role in the activation of the enzyme and subsequent gap junction inhibition. Substitution studies on peptides correlating to the C1B region show that a flexible structure and ability to be phosphorylated on serine 109 are critical for this purpose.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Proteína Quinase C/química , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Sobrevivência Celular , Células Cultivadas , Junções Comunicantes , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Estrutura Terciária de Proteína/genética , Coelhos , Relação Estrutura-Atividade
2.
FEBS J ; 274(2): 418-28, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17229147

RESUMO

Cathelicidins are an important family of cationic host defense peptides in vertebrates with both antimicrobial and immunomodulatory activities. Fowlicidin-1 and fowlicidin-2 are two newly identified chicken cathelicidins with potent antibacterial activities. Here we report structural and functional characterization of the putatively mature form of the third chicken cathelicidin, fowlicidin-3, for exploration of its therapeutic potential. NMR spectroscopy revealed that fowlicidin-3 comprises 27 amino-acid residues and adopts a predominantly alpha-helical structure extending from residue 9 to 25 with a slight kink induced by a glycine at position 17. It is highly potent against a broad range of Gram-negative and Gram-positive bacteria in vitro, including antibiotic-resistant strains, with minimum inhibitory concentrations in the range 1-2 microM. It kills bacteria quickly, permeabilizing cytoplasmic membranes immediately on coming into contact with them. Unlike many other host defense peptides with antimicrobial activities that are diminished by serum or salt, fowlicidin-3 retains bacteria-killing activities in the presence of 50% serum or physiological concentrations of salt. Furthermore, it is capable of suppressing lipopolysaccharide-induced expression of proinflammatory genes in mouse macrophage RAW264.7 cells, with nearly complete blockage at 10 microM. Fowlicidin-3 appears to be an excellent candidate for future development as a novel antimicrobial and antisepsis agent, particularly against antibiotic-resistant pathogens.


Assuntos
Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Lipopolissacarídeos/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Cátions , Cães , Inflamação , Macrófagos/metabolismo , Camundongos , Conformação Molecular , Dados de Sequência Molecular , Estrutura Secundária de Proteína , beta-Defensinas/química
3.
FEBS J ; 273(12): 2581-93, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16817888

RESUMO

Cationic antimicrobial peptides are naturally occurring antibiotics that are actively being explored as a new class of anti-infective agents. We recently identified three cathelicidin antimicrobial peptides from chicken, which have potent and broad-spectrum antibacterial activities in vitro (Xiao Y, Cai Y, Bommineni YR, Fernando SC, Prakash O, Gilliland SE & Zhang G (2006) J Biol Chem281, 2858-2867). Here we report that fowlicidin-1 mainly adopts an alpha-helical conformation with a slight kink induced by glycine close to the center, in addition to a short flexible unstructured region near the N terminus. To gain further insight into the structural requirements for function, a series of truncation and substitution mutants of fowlicidin-1 were synthesized and tested separately for their antibacterial, cytolytic and lipopolysaccharide (LPS)-binding activities. The short C-terminal helical segment after the kink, consisting of a stretch of eight amino acids (residues 16-23), was shown to be critically involved in all three functions, suggesting that this region may be required for the peptide to interact with LPS and lipid membranes and to permeabilize both prokaryotic and eukaryotic cells. We also identified a second segment, comprising three amino acids (residues 5-7) in the N-terminal flexible region, that participates in LPS binding and cytotoxicity but is less important in bacterial killing. The fowlicidin-1 analog, with deletion of the second N-terminal segment (residues 5-7), was found to retain substantial antibacterial potency with a significant reduction in cytotoxicity. Such a peptide analog may have considerable potential for development as an anti-infective agent.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Animais , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Sítios de Ligação , Células Cultivadas , Galinhas/metabolismo , Cães , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Lipopolissacarídeos/metabolismo , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade , Catelicidinas
4.
Org Biomol Chem ; 2(14): 2071-82, 2004 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-15254635

RESUMO

A model beta-hairpin dodecapeptide [EFGWVpGKWTIK] was designed by including a favorable D-ProGly Type II' beta-turn sequence and a Trp-zip interaction, while also incorporating a beta-strand unfavorable glycine residue in the N-terminal strand. This peptide is highly folded and monomeric in aqueous solution as determined by combined analysis with circular dichroism and 1H NMR spectroscopy. A peptide representing the folded conformation of the model beta-hairpin [cyclic(EFGWVpGKWTIKpG)] and a linear peptide representing the unfolded conformation [EFGWVPGKWTIK] yield unexpected relative deviations between the CD and 1H NMR spectroscopic results that are attributed to variations in the packing interactions of the aromatic side chains. Mutational analysis of the model beta-hairpin indicates that the Trp-zip interaction favors folding and stability relative to an alternate hydrophobic cluster between Trp and Tyr residues [EFGYVpGKWTIK]. The significance of select diagonal interactions in the model beta-hairpin was tested by rearranging the cross-strand hydrophobic interactions to provide a folded peptide [EWFGIpGKTYWK] displaying evidence of an unusual backbone conformation at the hydrophobic cluster. This unusual conformation does not appear to be a result of the glycine residue in the beta-strand, as replacement with a serine results in a peptide [EWFSIpGKTYWK] with a similar and seemingly characteristic CD spectrum. However, an alternate arrangement of hydrophobic residues with a Trp-zip interaction in a similar position to the parent beta-hairpin [EGFWVpGKWITK] results in a folded beta-hairpin conformation. The differences between side chain packing of these peptides precludes meaningful thermodynamic analysis and illustrates the caution necessary when interpreting beta-hairpin folding thermodynamics that are driven, at least in part, by aromatic cross strand interactions.


Assuntos
Modelos Moleculares , Peptídeos/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/síntese química , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Soluções/química
5.
Biophys J ; 86(3): 1424-35, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14990471

RESUMO

A number of channel-forming peptides derived from the second transmembrane (TM) segment (M2) of the glycine receptor alpha(1) subunit (M2GlyR), including the 22-residue sequence NK(4)-M2GlyR p22 wild type (WT) (KKKKPARVGLGITTVLTMTTQS), induce anion permeation across epithelial cell monolayers. In vitro assays suggest that this peptide or related sequences might function as a candidate for ion channel replacement therapy in treating channelopathies such as cystic fibrosis (CF). The wild-type sequence forms soluble associations in water that diminish its efficacy. Introduction of a single substitution S22W at the C-terminus, NK(4)-M2GlyR p22 S22W, eliminates the formation of higher molecular weight associations in solution. The S22W peptide also reduces the concentration of peptide required for half-maximal anion transport induced across Madin-Darby canine kidney cells (MDCK) monolayers. A combination of 2D double quantum filtered correlation spectroscopy (DQF-COSY), total correlation spectroscopy (TOCSY), nuclear Overhauser effect spectroscopy (NOESY), and rotating frame nuclear Overhauser effect spectroscopy (ROESY) data were recorded for both the associating WT and nonassociating S22W peptides and used to compare the primary structures and to assign the secondary structures. High-resolution structural studies were recorded in the solvent system (40% 2,2,2-Trifluoroethanol (TFE)/water), which gave the largest structural difference between the two peptides. Nuclear Overhauser effect crosspeak intensity provided interproton distances and the torsion angles were measured by spin-spin coupling constants. These constraints were put into the DYANA modeling program to generate a group of structures. These studies yielded energy-minimized structures for this mixed solvent environment. Structure for both peptides is confined to the 15-residue transmembrane segments. The energy-minimized structure for the WT peptide shows a partially helical extended structure. The S22W peptide adopts a bent conformation forming a hydrophobic pocket by hydrophobic interactions.


Assuntos
Membrana Celular/química , Membrana Celular/fisiologia , Canais Iônicos/fisiologia , Modelos Moleculares , Receptores de Glicina/química , Receptores de Glicina/fisiologia , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Simulação por Computador , Cães , Rim/química , Rim/fisiologia , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Conformação Proteica , Soluções , Relação Estrutura-Atividade , Triptofano/química , Triptofano/metabolismo , Água/química
6.
Biochemistry ; 41(30): 9572-9, 2002 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-12135379

RESUMO

The side chains of Arg(50) and Arg(52) at positions P(6)' and P(8)', respectively, anchor the binding loop to the protein scaffold by means of hydrogen bonds in Cucurbita maxima trypsin inhibitor-V (CMTI-V), a potato I family member. Here, we have investigated the relative contributions of Arg(50) and Arg(52) to the binding-loop flexibility and stability by determining changes in structure, dynamics, and proteolytic stability as a consequence of individually mutating them into an alanine. We have compared chemical shift assignments of main-chain hydrogens and nitrogens, and (1)H-(1)H interresidue nuclear Overhauser effects (NOEs) for the two mutants with those of the wild-type protein. We have also measured NMR longitudinal and transverse relaxation rates and (15)N-(1)H NOE enhancements for all backbone and side-chain NH groups and calculated the model-free parameters for R50A-rCMTI-V and R52A-rCMTI-V. The three-dimensional structures and backbone dynamics of the protein scaffold region remain very similar for both mutants, relative to the wild-type protein. The flexibility of the binding loop is increased in both R50A- and R52A-rCMTI-V. In R52A-rCMTI-V, the mean generalized order parameter () of the P(6)-P(1) residues of the binding loop (39-44) decreases to 0.68 +/- 0.02 from 0.76 +/- 0.04 observed for the wild-type protein. However, in R50A-rCMTI-V, the flexibility of the whole binding loop increases, especially that of the P(1)'-P(3)' residues (45-47), whose value drops dramatically to 0.35 +/- 0.03 from 0.68 +/- 0.03 determined for rCMTI-V. More strikingly, S(2) values of side-chain N epsilon Hs reveal that, in the R50A mutant, removal of the R50 hydrogen bond results in the loss of the R52 hydrogen bond too, whereas in R52A, the R50 hydrogen bond remains unaffected. Kinetic data on trypsin-catalyzed hydrolysis of the reactive-site peptide bond (P(1)-P(1)') suggest that the activation free energy barrier of the reaction at 25 degrees C is reduced by 2.1 kcal/mol for R50A-rCMTI-V and by 1.5 kcal/mol for R52A-rCMTI-V, relative to rCMTI-V. Collectively, the results suggest that although both the P(6') and P(8)' anchors are required for optimal inhibitor function and stability in the potato I family, the former is essential for the existence of the latter and has greater influence on the binding-loop structure, dynamics, and stability.


Assuntos
Arginina/metabolismo , Cucurbita/metabolismo , Inibidores da Tripsina/metabolismo , Catálise , Hidrólise , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tripsina/metabolismo , Inibidores da Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA