Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 4(4): 100742, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38554701

RESUMO

The pathogenesis of Alzheimer disease (AD) involves complex gene regulatory changes across different cell types. To help decipher this complexity, we introduce single-cell Bayesian biclustering (scBC), a framework for identifying cell-specific gene network biomarkers in scRNA and snRNA-seq data. Through biclustering, scBC enables the analysis of perturbations in functional gene modules at the single-cell level. Applying the scBC framework to AD snRNA-seq data reveals the perturbations within gene modules across distinct cell groups and sheds light on gene-cell correlations during AD progression. Notably, our method helps to overcome common challenges in single-cell data analysis, including batch effects and dropout events. Incorporating prior knowledge further enables the framework to yield more biologically interpretable results. Comparative analyses on simulated and real-world datasets demonstrate the precision and robustness of our approach compared to other state-of-the-art biclustering methods. scBC holds potential for unraveling the mechanisms underlying polygenic diseases characterized by intricate gene coexpression patterns.


Assuntos
Doença de Alzheimer , Progressão da Doença , Análise de Célula Única , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Análise de Célula Única/métodos , Transcriptoma/genética , Análise por Conglomerados , Teorema de Bayes , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética
2.
Hum Genet ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381161

RESUMO

Mendelian randomization is a powerful method for inferring causal relationships. However, obtaining suitable genetic instrumental variables is often challenging due to gene interaction, linkage, and pleiotropy. We propose Bayesian network-based Mendelian randomization (BNMR), a Bayesian causal learning and inference framework using individual-level data. BNMR employs the random graph forest, an ensemble Bayesian network structural learning process, to prioritize candidate genetic variants and select appropriate instrumental variables, and then obtains a pleiotropy-robust estimate by incorporating a shrinkage prior in the Bayesian framework. Simulations demonstrate BNMR can efficiently reduce the false-positive discoveries in variant selection, and outperforms existing MR methods in terms of accuracy and statistical power in effect estimation. With application to the UK Biobank, BNMR exhibits its capacity in handling modern genomic data, and reveals the causal relationships from hematological traits to blood pressures and psychiatric disorders. Its effectiveness in handling complex genetic structures and modern genomic data highlights the potential to facilitate real-world evidence studies, making it a promising tool for advancing our understanding of causal mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA