Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hepatol ; 76(3): 558-567, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34736969

RESUMO

BACKGROUND & AIMS: Drug-induced liver injury (DILI) remains challenging to treat and is still a leading cause of acute liver failure. MG53 is a muscle-derived tissue-repair protein that circulates in the bloodstream and whose physiological role in protection against DILI has not been examined. METHODS: Recombinant MG53 protein (rhMG53) was administered exogenously, using mice with deletion of Mg53 or Ripk3. Live-cell imaging, histological, biochemical, and molecular studies were used to investigate the mechanisms that underlie the extracellular and intracellular action of rhMG53 in hepatoprotection. RESULTS: Systemic administration of rhMG53 protein, in mice, can prophylactically and therapeutically treat DILI induced through exposure to acetaminophen, tetracycline, concanavalin A, carbon tetrachloride, or thioacetamide. Circulating MG53 protects hepatocytes from injury through direct interaction with MLKL at the plasma membrane. Extracellular MG53 can enter hepatocytes and act as an E3-ligase to mitigate RIPK3-mediated MLKL phosphorylation and membrane translocation. CONCLUSIONS: Our data show that the membrane-delimited signaling and cytosolic dual action of MG53 effectively preserves hepatocyte integrity during DILI. rhMG53 may be a potential treatment option for patients with DILI. LAY SUMMARY: Interventions to treat drug-induced liver injury and halt its progression into liver failure are of great value to society. The present study reveals that muscle-liver cross talk, with MG53 as a messenger, serves an important role in liver cell protection. Thus, MG53 is a potential treatment option for patients with drug-induced liver injury.


Assuntos
Hepatócitos/citologia , Proteínas de Membrana/metabolismo , Substâncias Protetoras/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas , Citosol/metabolismo , Modelos Animais de Doenças , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Proteínas de Membrana/análise , Proteínas de Membrana/sangue , Camundongos , Fatores de Proteção
2.
Clin Exp Nephrol ; 24(11): 989-998, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32734507

RESUMO

BACKGROUND: Contrast-induced nephropathy (CIN), a complication caused by using contrast medium during diagnostic and interventional procedures, occurs frequently and lacks effective treatment. AdipoRon, the agonist of adiponectin receptors, has been shown to benefit many organs including the kidney. This study aimed to investigate the role of AdipoRon in treating CIN. METHODS: CIN model was established via infusing iopromide (1.8 g/kg) in Sprague-Dawley (SD) rats; NRK52E cells were treated with iopromide (5-50 µM). Renal function, renal histopathology, levels of lactate dehydrogenase (LDH) release, cell vitality, oxidative stress and inflammatory markers were measured to evaluate the protective effects of AdipoRon. The level of pAMPK/AMPK was determined by western blot. RESULTS: AdipoRon (50 mg/kg) significantly reversed serum creatinine, blood urea nitrogen, creatinine clearance and urinary kidney injury molecule-1 levels induced by iopromide in SD rats. Besides, it decreased the renal injury score and apoptosis of renal cells. AdipoRon also reversed the changes of antioxidant markers, pro-oxidant and inflammatory markers induced by iopromide. Moreover, the in vitro studies showed that AdipoRon decreased LDH release and increased cell vitality in NRK52E cells treated with iopromide. Then, we demonstrated that the protection of AdipoRon was accompanied by augmented AMPK phosphorylation. Both in vivo and in vitro studies demonstrated that compound c, an AMPK inhibitor, reversed the AdipoRon-mediated improvement in the CIN model. CONCLUSION: Our data indicate that AdipoRon protects against the CIN by suppressing oxidative stress and inflammation via activating the AMPK pathway, showing that AdipoRon might be a potential candidate for the prevention and therapy of CIN.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Meios de Contraste/efeitos adversos , Iohexol/análogos & derivados , Nefropatias/prevenção & controle , Piperidinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Moléculas de Adesão Celular/urina , Linhagem Celular , Creatinina/sangue , Modelos Animais de Doenças , Inflamação/prevenção & controle , Iohexol/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/patologia , Lactato Desidrogenases/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Adiponectina/agonistas , Transdução de Sinais/efeitos dos fármacos
3.
Acta Pharmacol Sin ; 41(1): 34-46, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31515530

RESUMO

Abnormal growth of the intimal layer of blood vessels (neointima formation) contributes to the progression of atherosclerosis and in-stent restenosis. Recent evidence shows that the 18-kDa translocator protein (TSPO), a mitochondrial membrane protein, is involved in diverse cardiovascular diseases. In this study we investigated the role of endogenous TSPO in neointima formation after angioplasty in vitro and in vivo. We established a vascular injury model in vitro by using platelet-derived growth factor-BB (PDGF-BB) to stimulate rat thoracic aortic smooth muscle cells (A10 cells). We found that treatment with PDGF-BB (1-20 ng/mL) dose-dependently increased TSPO expression in A10 cells, which was blocked in the presence of PKC inhibitor or MAPK inhibitor. Overexpression of TSPO significantly promoted the proliferation and migration in A10 cells, whereas downregulation of TSPO expression by siRNA or treatment with TSPO ligands PK11195 or Ro5-4864 (104 nM) produced the opposite effects. Furthermore, we found that PK11195 (10-104 nM) dose-dependently activated AMPK in A10 cells. PK11195-induced inhibition on the proliferation and migration of PDGF-BB-treated A10 cells were abolished by compound C (an AMPK-specific inhibitor, 103 nM). In rats with balloon-injured carotid arteries, TSPO expression was markedly upregulated in the carotid arteries. Administration of PK11195 (3 mg/kg every 3 days, ip), starting from the initial balloon injury and lasting for 2 weeks, greatly attenuated carotid neointima formation by suppressing balloon injury-induced phenotype switching of VSMCs (increased α-SMA expression). These results suggest that TSPO is a vascular injury-response molecule that promotes VSMC proliferation and migration and is responsible for the neointima formation after vascular injury, which provides a novel therapeutic target for various cardiovascular diseases including atherosclerosis and restenosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Benzodiazepinonas/farmacologia , Isoquinolinas/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Neointima/metabolismo , Receptores de GABA/metabolismo , Animais , Becaplermina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligantes , Masculino , Músculo Liso Vascular/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA/genética
4.
Life Sci ; 221: 72-82, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738868

RESUMO

AIMS: The proliferation of VSMCs is the pathologic basis for intimal hyperplasia after angioplasty in diabetic patients. Translocator protein (TSPO), located in the outer mitochondrial membrane, has been found to regulate redox intermediate components in cell dysfunction. We hypothesized that TSPO may regulate VSMC proliferation and migration, and be involved in the intimal hyperplasia after angioplasty in diabetes. MATERIALS AND METHODS: Cell proliferation was measured by cell counting and MTT assays. Cell migration was measured by Transwell® and scratch-wound assays. TSPO expression in arteries of rats and high glucose-treated A10 cells were detected by immunoblotting and immunofluorescence staining. Neointimal formation of carotid artery was induced by balloon injury in type 2 diabetic rat. KEY FINDINGS: TSPO expression was increased in the arterial samples from diabetic rats and A10 cells treated with high glucose. Down-regulation of TSPO expression by siRNA decreased the high-glucose-induced VSMC proliferation and migration in A10 cells. This phenomenon could be simulated by using TSPO ligands, PK 11195 and Ro5-4864. cGMP/PKG signals were involved in the TSPO ligand action, since in the presence of cGMP or PKG inhibitor ODQ or KT5823 respectively, the effect of PK 11195 on VSMC proliferation was blocked. Furthermore, PK 11195 significantly inhibited neointimal formation by the inhibition of VSMC proliferation. SIGNIFICANCE: This study suggests that TSPO inhibition suppresses the proliferation and migration of VSMCs induced by hyperglycemia, consequently, preventing atherosclerosis and restenosis after angioplasty in diabetic conditions. TSPO may be a potential therapeutic target to reduce arterial remodeling induced by angioplasty in diabetes.


Assuntos
Proteínas de Transporte/metabolismo , Hiperplasia/metabolismo , Receptores de GABA-A/metabolismo , Animais , Benzodiazepinonas/farmacologia , Artérias Carótidas/patologia , Proteínas de Transporte/fisiologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Hiperplasia/prevenção & controle , Isoquinolinas/farmacologia , Ligantes , Masculino , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Neointima/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA