Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Orthop Translat ; 46: 116-128, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38867741

RESUMO

Objectives: SPARCL1 is a matricellular protein that mediates the cell-matrix interactions and participates in physiological processes such as cell adhesion, differentiation and proliferation. However, its role in chondrocyte and osteoarthritis (OA) progression has not been fully characterized. We aimed to evaluate the effects of SPARCL1 on OA through in vitro and in vivo experiments. Methods: Expression of SPARCL1 was examined in 55 paired human OA samples. Effects of Sparcl1 on chondrocytes were identified in vitro. Intra-articular injection was performed in an anterior cruciate ligament transection (ACLT) mouse model. Alterations of SPARCL1-mediated signaling pathway were identified by RNA-seq analysis. qPCR and western-blot were used to demonstrate the potential signaling pathway. Results: SPARCL1 expression in the OA cartilage was increased compared with undamaged cartilage. Recombinant Sparcl1 protein induced extracellular matrix degradation in chondrocytes. Furthermore, intra-articular injection of recombinant Sparcl1 protein in ACLT mice could promote OA pathogenesis. Mechanistically, Sparcl1 activated TNF/NF-κB pathway and consequently led to increased transcription of inflammatory factors and catabolism genes of cartilage, which could be reversed by NF-κB inhibitor BAY 11-7082. Conclusion: SPARCL1 could promote extracellular matrix degradation and inflammatory response to accelerate OA progression via TNF/NF-κB pathway. The translational potential of this article: The current research could help to gain further insights into the underlying molecular mechanism in OA development, and provides a biological rationale for the use of SPARCL1 as a potential therapeutic target of OA.

2.
Iran J Basic Med Sci ; 25(3): 295-301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35656180

RESUMO

Objectives: Osteosarcoma is a major solid malignant tumor of bone, possessing significant burden on healthcare due to non-availability of specific anticancer agents. The current study was conducted to identify novel 1,3,5-triazine derivatives against osteosarcoma. Materials and Methods: The compounds were synthesized in a straight-forward two-step reaction and subsequently tested against PI3K and mTOR kinase and anticancer activity against osteosarcoma cells (MG-63, U2-OS, and Saos-2). The effect of the most potent compound was evaluated on apoptosis and cell phase of Saos-2 cells. The pharmacological activity was further established in the patient-derived orthotopic xenograft (PDOX) mouse model. Results: The developed compounds 8 (a-f) showed significant inhibitory activities against PI3K, mTOR, and OS cells. Among the tested series, compound 8a showed highly potent PI3K/mTOR inhibitory activity with significant anticancer activity against Saos-2 cells compared with Imatinib as standard. It also induces apoptosis and causes G2/M arrest in Saos-2 cells. Compound 8a significantly improved body weight, reduced tumor volume, and inhibited lung metastasis in athymic nude mice in a PDOX mouse model. It also showed optimal pharmacokinetic parameters in SD rats. Conclusion: In summary, 1,3,5-triazine analogs were identified as new PI3K/mTOR inhibitors against osteosarcoma.

3.
Chem Biol Drug Des ; 99(2): 320-330, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811888

RESUMO

The present study deals with developing novel 1,3,5-triazine-nicotinohydrazide derivatives as potent CDK9 inhibitors in a straightforward synthetic route with potent anti-osteosarcoma activity. The most potent CDK9 inhibitor compound 5k inhibits proliferation of MG-63 cells via induction of apoptosis and G2/M cell cycle arrest. It reduces tumor progression in the patient-derived orthotopic xenograft (PDOX) mouse model with significant antioxidant and anti-inflammatory activity. In tumor tissue homogenates, it caused significant inhibition of CDK9 and inhibited the phosphorylation of RNAPII ser2 and reduced MCL-1 expression in Western blot analysis. Compound 5k also showed considerable bioavailability in SD mice. Our results demonstrated that compound 5k inhibits growth of OS in vitro and in vivo via inhibition of CDK9 which attenuated the downstream phosphorylation of RNAPII ser2 and represses expression of the anti-apoptotic protein, MCL-1 for the induction of apoptosis in OS.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hidrazinas/farmacologia , Nicotina/química , Osteossarcoma/patologia , Triazinas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Hidrazinas/química , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley
4.
Acta Pharm ; 72(3): 389-402, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651540

RESUMO

Osteosarcoma (OS) is an uncommon tumour that mainly affects bone in children and adolescents. The current treatment options of OS are of limited significance due to their immense side effects. In the present manuscript, we have developed a novel series of 1,2,3-triazole chalcone derivatives as potential agents against OS. The compounds were synthesized and evaluated for their PI3K and mTOR inhibitory activity using luminescent kinase assay, and Lance ultra assay, resp. The entire set of compounds showed significant to moderate inhibition of both kinases in the nanomolar range. The three most active compounds: 4e (N-(4-(3-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)acryloyl)phenyl)-4-nitrobenzamide), 4f (N-(4-(3-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)acryloyl)phenyl)-4-chlorobenzamide) and 4g (4-bromo-N-(4-(3-(1-(4-bromophenyl)-1H-1,2,3-triazol-4-yl)acryloyl)phenyl)benzamide), were evaluated for anticancer activity against human OS cancer cell line (MG-63), liver cancer cell line (HepG2), lung cancer cell line (A549) and cervical cancer (HeLa), using MTT assay. Among the tested series, compound 4e showed a better inhibitory profile than gedatolisib against PI3K and was approximately comparable to that of gedatolisib against mTOR. The most significant inhibitory activity was observed for compound 4e against all cell lines (MG-63, HepG2, A549 and HeLa), still somewhat lower to comparable to that of gedatolisib, but with the highest potency against MG-63 cells. Compound 4e was further tested for anti-cancer activity against other OS cells and showed to be equipo-tent to gedatolisib against U2OS and Saos-2 cells. Moreover, it was also found non-toxic to normal cells (BEAS-2B and MCF 10A). The effect of compound 4e was further determined on apoptosis of Saos-2 cells by Annexin-PI assay, where it significantly amplified the percentage of apoptotic cells. Novel 1,2,3-triazole chalcone derivatives are potential agents against OS.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Chalcona , Chalconas , Osteossarcoma , Criança , Humanos , Adolescente , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Chalconas/farmacologia , Chalconas/uso terapêutico , Chalcona/farmacologia , Chalcona/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Triazóis/farmacologia , Proliferação de Células , Apoptose , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA