Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 10(1): 11043, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632221

RESUMO

Apple bitter rot caused by Colletotrichum species is a growing problem worldwide. Colletotrichum spp. are economically important but taxonomically un-resolved. Identification of Colletotrichum spp. is critical due to potential species-level differences in pathogenicity-related characteristics. A 400-isolate collection from New York apple orchards were morphologically assorted to two groups, C. acutatum species complex (CASC) and C. gloeosporioides species complex (CGSC). A sub-sample of 44 representative isolates, spanning the geographical distribution and apple varieties, were assigned to species based on multi-locus phylogenetic analyses of nrITS, GAPDH and TUB2 for CASC, and ITS, GAPDH, CAL, ACT, TUB2, APN2, ApMat and GS genes for CGSC. The dominant species was C. fioriniae, followed by C. chrysophilum and a novel species, C. noveboracense, described in this study. This study represents the first report of C. chrysophilum and C. noveboracense as pathogens of apple. We assessed the enzyme activity and fungicide sensitivity for isolates identified in New York. All isolates showed amylolytic, cellulolytic and lipolytic, but not proteolytic activity. C. chrysophilum showed the highest cellulase and the lowest lipase activity, while C. noveboracense had the highest amylase activity. Fungicide assays showed that C. fioriniae was sensitive to benzovindiflupyr and thiabendazole, while C. chrysophilum and C. noveboracense were sensitive to fludioxonil, pyraclostrobin and difenoconazole. All species were pathogenic on apple fruit with varying lesion sizes. Our findings of differing pathogenicity-related characteristics among the three species demonstrate the importance of accurate species identification for any downstream investigations of Colletotrichum spp. in major apple growing regions.


Assuntos
Colletotrichum/patogenicidade , Malus/microbiologia , Doenças das Plantas/microbiologia , Colletotrichum/classificação , Colletotrichum/genética , Farmacorresistência Fúngica , Frutas/microbiologia , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana , New York , Filogenia , Especificidade da Espécie , Virulência
3.
Fungal Genet Biol ; 135: 103291, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31698077

RESUMO

Septins are highly conserved GTP-binding proteins that function in cell cytokinesis, polarity and morphogenesis. To evaluate the roles of these proteins in inoculum health and disease, mutants deleted for each of five septin proteins (Cdc3, Cdc10, Cdc11, Cdc12, and Cdc100) were characterized in the ascomycete Cochliobolus heterostrophus for ability to develop asexual and sexual spores and for virulence to the host maize. Strains deleted for CDC3, CDC10, CDC11, and CDC12 genes showed significant changes in hyphal growth, and in development of conidia and ascospores compared to the wild-type strain. Conidia had dramatically reduced numbers of septa and rates of germination, while ascospore development was blocked in the meiotic process. Although asci were produced, wild-type ascospores were not. When equal numbers of conidia from wild type and mutants were used to inoculate maize, cdc10 mutants showed reduced virulence compared to the wild-type strain and other mutants. This reduced virulence was demonstrated to be correlated with lower germination rate of cdc10 mutant conidia. When adjusted for germination rate, virulence was equivalent to the wild-type strain. Double mutants (cdc3cdc10, cdc3cdc11) showed augmented reduced growth phenotypes. cdc100 mutants were wild type in all assays. Taken together, these findings indicate that all four conserved septin proteins play a major role in reproductive propagule formation and that mutants with deletions of CDC10 are reduced in virulence to the host maize.


Assuntos
Bipolaris/crescimento & desenvolvimento , Bipolaris/patogenicidade , Proteínas Fúngicas/metabolismo , Septinas/metabolismo , Zea mays/microbiologia , Bipolaris/genética , Proteínas Fúngicas/genética , Septinas/genética , Esporos Fúngicos/crescimento & desenvolvimento , Virulência/genética
4.
Am J Bot ; 106(11): 1412-1422, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31675110

RESUMO

PREMISE: Most plants interact with mycorrhizal fungi and animal pollinators simultaneously. Yet, whether mycorrhizae affect traits important to pollination remains poorly understood and may depend on the match between host and fungal genotypes. Here, we examined how ericoid mycorrhizal fungi affected flowering phenology, floral traits, and reproductive success, among eight genotypes of highbush blueberry, Vaccinium corymbosum (Ericaceae). We asked three overarching questions: (1) Do genotypes differ in response to inoculation? (2) How does inoculation affect floral and flowering traits? (3) Are inoculated plants more attractive to pollinators and less pollen limited than non-inoculated plants of the same genotype? METHODS: To examine these questions, we experimentally inoculated plants with ericoid mycorrhizal fungi, grew the plants in the field, and measured flowering and floral traits over 2 years. In year 2, we conducted a hand-pollination experiment to test whether plants differed in pollen limitation. RESULTS: Inoculated plants had significantly higher levels of colonization for some genotypes, and there were significant floral trait changes in inoculated plants for some genotypes as well. On average, inoculated plants produced significantly larger floral displays, more fruits per inflorescence, and heavier fruits with lower sugar content, than non-inoculated, control plants. Hand pollination enhanced the production of fruits, and fruit mass, for non-inoculated plants but not for those that were inoculated. CONCLUSIONS: Our results demonstrate that inoculation with ericoid mycorrhizal fungi enhanced flowering and altered investment in reproduction in genotype-specific ways. These findings underscore the importance of examining belowground symbionts and genotype-specific responses in their hosts to fully understand the drivers of aboveground interactions.


Assuntos
Mirtilos Azuis (Planta) , Ericaceae , Micorrizas , Animais , Flores , Genótipo , Polinização , Reprodução
5.
Mol Plant Microbe Interact ; 31(11): 1154-1165, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29792566

RESUMO

The Southern corn leaf blight (SCLB) epidemic of 1970 devastated fields of T-cytoplasm corn planted in monoculture throughout the eastern United States. The epidemic was driven by race T, a previously unseen race of Cochliobolus heterostrophus. A second fungus, Phyllosticta zeae-maydis, with the same biological specificity, appeared coincidentally. Race T produces T-toxin, while Phyllosticta zeae-maydis produces PM-toxin, both host-selective polyketide toxins necessary for supervirulence. The present abundance of genome sequences offers an opportunity to tackle the evolutionary origins of T- and PM- toxin biosynthetic genes, previously thought unique to these species. Using the C. heterostrophus genes as probes, we identified orthologs in six additional Dothideomycete and three Eurotiomycete species. In stark contrast to the genetically fragmented race T Tox1 locus that encodes these genes, all newly found Tox1-like genes in other species reside at a single collinear locus. This compact arrangement, phylogenetic analyses, comparisons of Tox1 protein tree topology to a species tree, and Tox1 gene characteristics suggest that the locus is ancient and that some species, including C. heterostrophus, gained Tox1 by horizontal gene transfer. C. heterostrophus and Phyllosticta zeae-maydis did not exchange Tox1 DNA at the time of the SCLB epidemic, but how they acquired Tox1 remains uncertain. The presence of additional genes in Tox1-like clusters of other species, although not in C. heterostrophus and Phyllosticta zeae-maydis, suggests that the metabolites produced differ from T- and PM-toxin.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Ascomicetos/metabolismo , Evolução Biológica , Proteínas Fúngicas/metabolismo , Família Multigênica , Mutação , Micotoxinas/genética , Filogenia , Folhas de Planta/microbiologia
6.
Oecologia ; 187(1): 123-133, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29594499

RESUMO

The functional relationship between arbuscular mycorrhizal fungi (AMF) and their hosts is variable on small spatial scales. Here, we hypothesized that herbivore exclusion changes the AMF community and alters the ability of AMF to enhance plant tolerance to grazing. We grew the perennial bunchgrass, Themeda triandra Forssk in inoculum from soils collected in the Kenya Long-term Exclosure Experiment where treatments representing different levels of herbivory have been in place since 1995. We assessed AMF diversity in the field, using terminal restriction fragment length polymorphism and compared fungal diversity among treatments. We conducted clipping experiments in the greenhouse and field and assessed regrowth. Plants inoculated with AMF from areas accessed by wild herbivores and cattle had greater biomass than non-inoculated controls, while plants inoculated with AMF from where large herbivores were excluded did not benefit from AMF in terms of biomass production. However, only the inoculation with AMF from areas with wild herbivores and no cattle had a positive effect on regrowth, relative to clipped plants grown without AMF. Similarly, in the field, regrowth of plants after clipping in areas with only native herbivores was higher than other treatments. Functional differences in AMF were evident despite little difference in AMF species richness or community composition. Our findings suggest that differences in large herbivore communities over nearly two decades has resulted in localized, functional changes in AMF communities. Our results add to the accumulating evidence that mycorrhizae are locally adapted and that functional differences can evolve within small geographical areas.


Assuntos
Micorrizas , Animais , Bovinos , Fungos , Pradaria , Herbivoria , Quênia , Desenvolvimento Vegetal , Raízes de Plantas
7.
Int J Syst Evol Microbiol ; 67(5): 1177-1184, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28073398

RESUMO

Arbuscular mycorrhizal fungi (AMF, subphylum Glomeromycotina) are symbionts of most terrestrial plants. They commonly harbour endobacteria of a largely unknown biology, referred to as MRE (Mollicutes/mycoplasma-related endobacteria). Here, we propose to accommodate MRE in the novel genus 'Candidatus Moeniiplasma.' Phylogeny reconstructions based on the 16S rRNA gene sequences cluster 'Ca.Moeniiplasma' with representatives of the class Mollicutes, whereas phylogenies derived from amino acid sequences of 19 genes indicate that it is a discrete lineage sharing ancestry with the members of the family Mycoplasmataceae. Cells of 'Ca.Moeniiplasma' reside directly in the host cytoplasm and have not yet been cultivated. They are coccoid, ~500 nm in diameter, with an electron-dense layer outside the plasma membrane. However, the draft genomes of 'Ca.Moeniiplasma' suggest that this structure is not a Gram-positive cell wall. The evolution of 'Ca.Moeniiplasma' appears to be driven by an ultrarapid rate of mutation accumulation related to the loss of DNA repair mechanisms. Moreover, molecular evolution patterns suggest that, in addition to vertical transmission, 'Ca.Moeniiplasma' is able to transmit horizontally among distinct Glomeromycotina host lineages and exchange genes. On the basis of these unique lifestyle features, the new species 'Candidatus Moeniiplasma glomeromycotorum' is proposed.


Assuntos
Micorrizas , Filogenia , Simbiose , Tenericutes/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Evolução Molecular , Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tenericutes/genética , Tenericutes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA