Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047613

RESUMO

Curcumin shows anti-inflammatory activity, and it has been widely investigated for neurodegenerative diseases, adjuvant treatment in AIDS and antitumor activity against different tumors, among other activities. The goal of this work was to evaluate the capacity of curcumin and its derivatives (bisdemethoxycurcumin and bisdemethylcurcumin) in preventing the irritant effects of topically applied xylol and to assess the intrinsic capacity of curcuminoids in permeating human skin by ex vivo permeation tests. Its secondary goal was to validate an HPLC method to simultaneously determine the curcuminoids in the samples from the ex vivo permeation studies and drug extraction from the skin. Curcuminoid quantification was performed using an RP-C18 column, at isocratic conditions of elution and a detection wavelength of 265 nm. The method was specific with a suitable peak resolution, as well as linear, precise, and accurate in the range of 0.195-3.125 µg/mL for the three curcuminoids. Bisdemethylcurcumin showed the greatest permeation through the human skin, and it was the curcuminoid that was most retained within the human skin. The anti-inflammatory activity of the curcuminoids was evaluated in vivo using a xylol-induced inflammation model in rats. Histological studies were performed to observe any changes in morphology at the microscopic level, and these three curcuminoids were found to be respectful within the skin structure. These results show that these three curcuminoids are suitable for anti-inflammatory formulations for dermal applications, and they can be properly quantified using HPLC-UV.


Assuntos
Curcumina , Humanos , Ratos , Animais , Curcumina/farmacologia , Curcumina/química , Cromatografia Líquida de Alta Pressão/métodos , Curcuma/química , Diarileptanoides , Anti-Inflamatórios/farmacologia
2.
iScience ; 25(12): 105686, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36578318

RESUMO

Our work examines the structural-electronic correlation of a new curcuminoid, AlkCCMoid, as a dielectric material on different substrates. For this purpose, we show a homemade sublimation method that allows the direct deposition of molecules on any type of matrix. The electronic properties of AlkCCMoid have been evaluated by measurements on single crystals, microcrystalline powder, and sublimated samples, respectively. GIWAXS studies on surfaces and XRD studies on powder have revealed the existence of polymorphs and the effect that substrates have on curcuminoid organization. We describe the dielectric nature of our system and identify how different polymorphs can affect electronic parameters such as permittivity, all corroborated by DFT calculations.

3.
Inorg Chem ; 61(41): 16347-16355, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36198146

RESUMO

Two mononuclear DyIII complexes, [Dy(L1)(NCS)3] (Dy-EDA) and [Dy(L2)(NCS)3] (Dy-DAP), where Ln (n = 1-2) corresponds to a macrocyclic ligand derived from 2,6-pyridinedicarboxaldehyde and ethylenediamine (L1) and 1,3-diaminepropane (L2) were immobilized on functionalized silicon-based surfaces. This was achieved by the microcontact printing (µCP) technique, generating patterns on a functionalized surface via covalent bond formation through the auxiliary -NCS ligands present in the macrocyclic complex species. With this strategy, it was possible to control the position of the immobilized molecules on the surface. Water contact angle measurements, X-ray photoelectron spectroscopy (XPS), infrared reflection absorption spectra (IRRAS), and atomic force microscopy (AFM) confirmed that the surfaces were successfully functionalized. Furthermore, the optical properties in a broad temperature range were investigated for the as-prepared compounds. At room temperature, Dy-EDA was shown to emit in the deep blue region (Commission Internationald'Eclairage (CIE): (0.175, 0.128)), while Dy-DAP in the white region (CIE: (0.252, 0.312)). The different CIE values were due to the contribution of the strong emission of the ligand in the case of Dy-EDA. Besides, surface photoluminescence measurements showed that the immobilized complexes retained their bulk emissive properties.

4.
Angew Chem Int Ed Engl ; 60(49): 25958-25965, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726815

RESUMO

Here we present room-temperature spin-dependent charge transport measurements in single-molecule junctions made of metalloporphyrin-based supramolecular assemblies. They display large conductance switching for magnetoresistance in a single-molecule junction. The magnetoresistance depends acutely on the probed electron pathway through the supramolecular wire: those involving the metal center showed marked magnetoresistance effects as opposed to those exclusively involving the porphyrin ring which present nearly complete absence of spin-dependent charge transport. The molecular junction magnetoresistance is highly anisotropic, being observable when the magnetization of the ferromagnetic junction electrode is oriented along the main molecular junction axis, and almost suppressed when it is perpendicular. The key ingredients for the above effect to manifest are the electronic structure of the paramagnetic metalloporphyrin, and the spinterface created at the molecule-electrode contact.

5.
Dalton Trans ; 50(20): 7056-7064, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33949538

RESUMO

We present a new heteroditopic ligand (3pyCCMoid) that contains the typical skeleton of a curcuminoid (CCMoid) decorated with two 3-pyridyl groups. The coordination of 3pyCCMoid with ZnII centres results in a set of novel coordination polymers (CPs) that display different architectures and dimensionalities (from 1D to 3D). Our work analyses how synthetic methods and slight changes in the reaction conditions affect the formation of the final materials. Great efforts have been devoted toward understanding the coordination entities that provide high dimensional systems, with emphasis on the characterization of 2D materials, including analyses of different types of substrates, stability and exfoliation in water. Here, we foresee the great use of CCMoids in the field of CPs and emphasize 3pyCCMoid as a new-born linker.

6.
Pharmaceutics ; 12(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752258

RESUMO

Bipyridinium salts, commonly known as viologens, are π-acceptor molecules that strongly interact with π-donor compounds, such as porphyrins or amino acids, leading their self-assembling. These properties have promoted us to functionalize polysilicon microparticles with bipyridinium salts for the encapsulation and release of π-donor compounds such as catecholamines and indolamines. In this work, the synthesis and characterization of four gemini-type amphiphilic bipyridinium salts (1·4PF6-4·4PF6), and their immobilization either non-covalently or covalently on polysilicon surfaces and microparticles have been achieved. More importantly, they act as hosts for the subsequent incorporation of π-donor neurotransmitters such as dopamine, serotonin, adrenaline or noradrenaline. Ultraviolet-visible absorption and fluorescence spectroscopies and high-performance liquid chromatography were used to detect the formation of the complex in solution. The immobilization of bipyridinium salts and neurotransmitter incorporation on polysilicon surfaces was corroborated by contact angle measurements. The reduction in the bipyridinium moiety and the subsequent release of the neurotransmitter was achieved using ascorbic acid, or Vitamin C, as a triggering agent. Quantification of neurotransmitter encapsulated and released from the microparticles was performed using high-performance liquid chromatography. The cytotoxicity and genotoxicity studies of the bipyridinium salt 1·4PF6, which was selected for the non-covalent functionalization of the microparticles, demonstrated its low toxicity in the mouse fibroblast cell line (3T3/NIH), the human liver carcinoma cell line (HepG2) and the human epithelial colorectal adenocarcinoma cell line (Caco-2).

7.
Angew Chem Int Ed Engl ; 59(43): 19193-19201, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33448538

RESUMO

Nature has developed supramolecular constructs to deliver outstanding charge-transport capabilities using metalloporphyrin-based supramolecular arrays. Herein we incorporate simple, naturally inspired supramolecular interactions via the axial complexation of metalloporphyrins into the formation of a single-molecule wire in a nanoscale gap. Small structural changes in the axial coordinating linkers result in dramatic changes in the transport properties of the metalloporphyrin-based wire. The increased flexibility of a pyridine-4-yl-methanethiol ligand due to an extra methyl group, as compared to a more rigid 4-pyridinethiol linker, allows the pyridine-4-yl-methanethiol ligand to adopt an unexpected highly conductive stacked structure between the two junction electrodes and the metalloporphyrin ring. DFT calculations reveal a molecular junction structure composed of a shifted stack of the two pyridinic linkers and the metalloporphyrin ring. In contrast, the more rigid 4-mercaptopyridine ligand presents a more classical lifted octahedral coordination of the metalloporphyrin metal center, leading to a longer electron pathway of lower conductance. This works opens to supramolecular electronics, a concept already exploited in natural organisms.

8.
Chemistry ; 24(49): 12950-12960, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29893444

RESUMO

A chiral ZnII porphyrin derivative 1 and its achiral analogue 2 were studied in the solid state. Considering the rich molecular recognition of designed metalloporphyrins 1 and 2 and their tendency to crystallize, they were recrystallized from two solvent mixtures (CH2 Cl2 /CH3 OH and CH2 Cl2 /hexane). As a result, four different crystalline arrangements (1 a,b and 2 a,b, from 0D to 2D) were obtained. Solid-state studies were performed on all the species to analyze the role played by chirality, solvent mixtures, and surfaces (mica and HOPG) in the supramolecular arrangements. By means of combinations of solvents and substrates a variety of microsized species was obtained, from vesicles to flower-shaped arrays, including geometrical microcrystals. Overall, the results emphasize the environmental susceptibility of metalloporphyrins and how this feature must be taken into account in their design.

9.
ChemistryOpen ; 6(4): 585-598, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28794954

RESUMO

A cationic bis-imidazolium-based amphiphile was used to form thermoreversible nanostructured supramolecular hydrogels incorporating neutral and cationic drugs for the topical treatment of rosacea. The concentration of the gelator and the type and concentration of the drug incorporated were found to be factors that strongly influenced the gelling temperature, gel-formation period, and overall stability and morphology. The incorporation of brimonidine tartrate resulted in the formation of the most homogeneous material of the three drugs explored, whereas the incorporation of betamethasone resulted in a gel with a completely different morphology comprising linked particles. NMR spectroscopy studies proved that these gels kept the drug not only at the interstitial space but also within the fibers. Due to the design of the gelator, drug release was up to 10 times faster and retention of the drug within the skin was up to 20 times more effective than that observed for commercial products. Experiments in vivo demonstrated the rapid efficacy of these gels in reducing erythema, especially in the case of the gel with brimonidine. The lack of coulombic attraction between the gelator-host and the guest-drug seemed particularly important in highly effective release, and the intermolecular interactions operating between them were found to lie at the root of the excellent properties of the materials for topical delivery and treatment of rosacea.

10.
Chem Commun (Camb) ; 53(32): 4509-4512, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28387417

RESUMO

Gels formed by a gemini dicationic amphiphile incorporate a serine protease inhibitor, which could be used in a new approach to the treatment of Rosacea, within the fibres as well as in the space between them, affecting a number of gel properties but most importantly inducing remarkable fibre coiling at the microscopic level as a result of drug release from the gel. Drug release and skin permeation experiments show its potential for topical administration.


Assuntos
Hidrogéis/farmacologia , Imidazóis/farmacologia , Inibidores de Serina Proteinase/farmacologia , Pele/efeitos dos fármacos , Administração Tópica , Cátions/administração & dosagem , Cátions/química , Cátions/farmacologia , Liberação Controlada de Fármacos/efeitos dos fármacos , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Imidazóis/administração & dosagem , Imidazóis/química , Substâncias Macromoleculares/administração & dosagem , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Estrutura Molecular , Tamanho da Partícula , Inibidores de Serina Proteinase/química , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos
11.
Langmuir ; 33(15): 3635-3638, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28351137

RESUMO

Monolayer contact doping (MLCD) is a modification of the monolayer doping (MLD) technique that involves monolayer formation of a dopant-containing adsorbate on a source substrate. This source substrate is subsequently brought into contact with the target substrate, upon which the dopant is driven into the target substrate by thermal annealing. Here, we report a modified MLCD process, in which we replace the commonly used Si source substrate by a thermally oxidized substrate with a 100 nm thick silicon oxide layer, functionalized with a monolayer of a dopant-containing silane. The thermal oxide potentially provides a better capping effect and effectively prevents the dopants from diffusing back into the source substrate. The use of easily accessible and processable silane monolayers provides access to a general and modifiable process for the introduction of dopants on the source substrate. As a proof of concept, a boron-rich carboranyl-alkoxysilane was used here to construct the monolayer that delivers the dopant, to boost the doping level in the target substrate. X-ray photoelectron spectroscopy (XPS) showed a successful grafting of the dopant adsorbate onto the SiO2 surface. The achieved doping levels after thermal annealing were similar to the doping levels acessible by MLD as demonstrated by secondary ion mass spectrometry measurements. The method shows good prospects, e.g. for use in the doping of Si nanostructures.

12.
Langmuir ; 32(51): 13593-13599, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27977212

RESUMO

Single-pass electrostatic force microscopy is postulated as one of the most advanced techniques in terms of spatial resolution and fastness in data acquisition for the study of electrostatic phenomena at the nanoscale. However, crosstalk anomalies, in which mechanical interactions combine with tip-sample electrostatic forces, are still a major issue to overcome, specifically in soft and biological samples. In this paper we propose a novel method based on bimodal-atomic force microscopy to distinguish mechanical crosstalk from electrostatic images. The method is based in the comparison of bimodal AFM images with electrostatic ones, where pure mechanical interaction can be discerned from a mixture of mechanical and electrostatic interactions. The proposed method is optimized and demonstrated using a supramolecular charge transfer material. Finally, the method is used as a tool to depict different crosstalk levels in tetrathiafulvalene-based (TTF) assemblies, discerning between electrical and mechanical interactions. This kind of observation is important for obtaining accurate descriptions of charge distribution in samples made from organic and molecular layers and materials.

13.
Sci Rep ; 6: 37352, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27869128

RESUMO

In contrast with conventional single-molecule junctions, in which the current flows parallel to the long axis or plane of a molecule, we investigate the transport properties of M(II)-5,15-diphenylporphyrin (M-DPP) single-molecule junctions (M=Co, Ni, Cu, or Zn divalent metal ions), in which the current flows perpendicular to the plane of the porphyrin. Novel STM-based conductance measurements combined with quantum transport calculations demonstrate that current-perpendicular-to-the-plane (CPP) junctions have three-orders-of-magnitude higher electrical conductances than their current-in-plane (CIP) counterparts, ranging from 2.10-2 G0 for Ni-DPP up to 8.10-2 G0 for Zn-DPP. The metal ion in the center of the DPP skeletons is strongly coordinated with the nitrogens of the pyridyl coated electrodes, with a binding energy that is sensitive to the choice of metal ion. We find that the binding energies of Zn-DPP and Co-DPP are significantly higher than those of Ni-DPP and Cu-DPP. Therefore when combined with its higher conductance, we identify Zn-DPP as the favoured candidate for high-conductance CPP single-molecule devices.


Assuntos
Complexos de Coordenação/química , Condutividade Elétrica , Metaloporfirinas/química , Cobalto/química , Cobre/química , Eletroquímica , Níquel/química , Zinco/química
14.
Nanoscale ; 8(16): 8773-83, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27064355

RESUMO

The development of micro- and nanosystems for their use in biomedicine is a continuously growing field. One of the major goals of such platforms is to combine multiple functions in a single entity. However, achieving the design of an efficient and safe micro- or nanoplatform has shown to be strongly influenced by its interaction with the biological systems, where particle features or cell types play a critical role. In this work, the feasibility of using multi-material pSi-Cr-Au intracellular chips (MMICCs) for multifunctional applications by characterizing their interactions with two different cell lines, one tumorigenic and one non-tumorigenic, in terms of biocompatibility, internalization and intracellular fate, has been explored. Moreover, the impact of MMICCs on the induction of an inflammatory response has been assessed by evaluating TNFα, IL1b, IL6, and IL10 human inflammatory cytokines secretion by macrophages. Results show that MMICCs are biocompatible and their internalization efficiency is strongly dependent on the cell type. Finally as a proof-of-concept, MMICCs have been dually functionalized with transferrin and pHrodo™ Red, SE to target cancer cells and detect intracellular pH, respectively. In conclusion, MMICCs can be used as multi-functional devices due to their high biocompatibility, non-inflammatory properties and the ability of developing multiple functions.


Assuntos
Cromo/química , Ouro/química , Nanoestruturas/química , Silício/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Nanomedicina , Nanoestruturas/toxicidade , Nanoestruturas/ultraestrutura , Nanotecnologia , Receptores da Transferrina/metabolismo
15.
ACS Nano ; 10(2): 2521-7, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26841282

RESUMO

Graphene electrodes are promising candidates to improve reproducibility and stability in molecular electronics through new electrode-molecule anchoring strategies. Here we report sequential electron transport in few-layer graphene transistors containing individual curcuminoid-based molecules anchored to the electrodes via π-π orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule-electrode coupling; we argue that an intermediate electron-phonon coupling is the origin of these vibrational-assisted excitations. These experimental observations are complemented with density functional theory calculations to model electron transport and the interaction between electrons and vibrational modes of the curcuminoid molecule. We find that the calculated vibrational modes of the molecule are in agreement with the experimentally observed excitations.

16.
J Am Chem Soc ; 137(50): 15795-808, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26595320

RESUMO

A series of chiral synthetic compounds is reported that shows intricate but specific hierarchical assembly because of varying positions of coordination and hydrogen bonds. The evolution of the aggregates (followed by absorption spectroscopy and temperature-dependent circular dichroism studies in solution) reveal the influence of the proportion of stereogenic centers in the side groups connected to the chromophore ring in their optical activity and the important role of pyridyl groups in the self-assembly of these chiral macrocycles. The optical activity spans 2 orders of magnitude depending on composition and constitution. Two of the aggregates show very high optical activity even though the isolated chromophores barely give a circular dichroism signal. Molecular modeling of the aggregates, starting from the pyridine-zinc(II) porphyrin interaction and working up, and calculation of the circular dichroism signal confirm the origin of this optical activity as the chiral supramolecular organization of the molecules. The aggregates show a broad absorption range, between approximately 390 and 475 nm for the transitions associated with the Soret region alone, that spans wavelengths far more than the isolated chromophore. The supramolecular assemblies of the metalloporphyrins in solution were deposited onto highly oriented pyrolitic graphite in order to study their hierarchy in assembly by atomic force microscopy. Zero and one-dimensional aggregates were observed, and a clear dependence on deposition temperature was shown, indicating that the hierarchical assembly took place largely in solution. Moreover, scanning electron microscopy images of porphyrins and metalloporphyrins precipitated under out-of-equilibrium conditions showed the dependence of the number and position of chiral amide groups in the formation of a fibrillar nanomaterial. The combination of coordination and hydrogen bonding in the complicated assembly of these molecules-where there is a clear hierarchy for zinc(II)-pyridyl interaction followed by hydrogen-bonding between amide groups, and then van der Waals interactions-paves the way for the preparation of molecular materials with multiple chromophore environments.

17.
ACS Appl Mater Interfaces ; 7(49): 27357-61, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26595856

RESUMO

Monolayer doping (MLD) presents an alternative method to achieve silicon doping without causing crystal damage, and it has the capability of ultrashallow doping and the doping of nonplanar surfaces. MLD utilizes dopant-containing alkene molecules that form a monolayer on the silicon surface using the well-established hydrosilylation process. Here, we demonstrate that MLD can be extended to high doping levels by designing alkenes with a high content of dopant atoms. Concretely, carborane derivatives, which have 10 B atoms per molecule, were functionalized with an alkene group. MLD using a monolayer of such a derivative yielded up to ten times higher doping levels, as measured by X-ray photoelectron spectroscopy and dynamic secondary mass spectroscopy, compared to an alkene with a single B atom. Sheet resistance measurements showed comparably increased conductivities of the Si substrates. Thermal budget analyses indicate that the doping level can be further optimized by changing the annealing conditions.

18.
Chemistry ; 21(47): 16792-5, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26441132

RESUMO

As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to π-π interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.

19.
Chemistry ; 20(32): 9940-51, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24976049

RESUMO

Two sets of o-carborane derivatives incorporating fluorene and anthracene fragments as fluorophore groups have been successfully synthesized and characterized, and their photophysical properties studied. The first set, comprising fluorene-containing carboranes 6-9, was prepared by catalyzed hydrosilylation reactions of ethynylfluorene with appropriate carboranylsilanes. The compound 1-[(9,9-dioctyl-fluorene-2-yl)ethynyl]carborane (11) was synthesized by the reaction of 9,9-dioctyl-2-ethynylfluorene and decaborane (B10H14). Furthermore, reactions of the lithium salt of 11 with 1 equivalent of 4-(chloromethyl)styrene or 9-(chloromethyl)anthracene yielded compounds 12 and 13. Members of the second set of derivatives, comprising anthracene-containing carboranes, were synthesized by reactions of monolithium or dilithium salts of 1-Me-1,2-C2B10H11, 1-Ph-1,2-C2B10H11, and 1,2-C2B10H12 with 1 or 2 equivalents of 9-(chloromethyl)anthracene, respectively, to produce compounds 14-16. In addition, 2 equivalents of the monolithium salts of 1-Me-1,2-C2B10H11 (Me-o-carborane) and 1-Ph-1,2-C2B10H11 (Ph-o-carborane) were reacted with 9,10-bis(chloromethyl)anthracene to produce compounds 17 and 18, respectively. Fluorene derivatives 6-9 exhibit moderate fluorescence quantum yields (32-44 %), whereas 11-13, in which the fluorophore is bonded to the Ccluster (Cc), show very low emission intensity (6 %) or complete fluorescence quenching. The anthracenyl derivatives containing the Me-o-carborane moiety exhibit notably high fluorescence emissions, with ϕF = 82 and 94 %, whereas their Ph-o-carborane analogues are not fluorescent at all. For these compounds, we have observed a correlation between the Cc-Cc bond length and the fluorescence intensity in CH2Cl2 solution, comparable to that observed for previously reported styrene-containing carboranes. Thus, our hypothesis is that for systems of this type the fluorescence may be tuned and even predicted by changing the substituent on the adjacent Cc.

20.
Top Curr Chem ; 333: 109-56, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460199

RESUMO

Interfaces are a most important environment in natural and synthetic chemistries for a wide variety of processes, such as catalysis, recognition, separation, and so on. Naturally occurring systems have evolved to one handedness and the study of interfaces where biomolecules are located is a potentially revealing pursuit with regard to understanding the reasons and importance of stereochemistry in these environments. Equally, the spontaneous resolution of achiral and chiral compounds at interfaces could lead to explanations regarding the emergence of single handedness in proteins and sugars. Also, the attachment of biomolecules to surfaces leads to systems capable of stereoselective processes which may be useful for the applications mentioned above. The review covers systems ranging from small biomolecules studied under ultrapure conditions in vacuum to protein adsorption to surfaces in solution, and the techniques that can be used to study them.


Assuntos
Proteínas/química , Estereoisomerismo , Adsorção , Cristalização , Ciclodextrinas/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA