Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(4): 2426-2441, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38549452

RESUMO

The meniscus is divided into three zones according to its vascularity: an external vascularized red-red zone mainly comprising collagen I, a red-white interphase zone mainly comprising collagens I and II, and an internal white-white zone rich in collagen II. Known scaffolds used to treat meniscal injuries do not reflect the chemical composition of the vascular areas of the meniscus. Therefore, in this study, four composite zonal scaffolds (named A, B, C, and D) were developed and characterized; the developed scaffolds exhibited the main chemical components of the external (collagen I), interphase (collagens I/II), and internal (collagen II) zones of the meniscus. Noncomposite scaffolds were also produced (named E), which had the same shape as the composite scaffolds but were entirely made of collagen I. The composite zonal scaffolds were prepared using different concentrations of collagen I and the same concentration of collagen II and were either cross-linked with genipin or not cross-linked. Porous, biodegradable, and hydrophilic scaffolds with an expected chemical composition were obtained. Their pore size was smaller than the size reported for the meniscus substitutes; however, all scaffolds allowed the adhesion and proliferation of human adipose-derived stem cells (hADSCs) and were not cytotoxic. Data from enzymatic degradation and hADSC proliferation assays were considered for choosing the cross-linked composite scaffolds along with the collagen I scaffold and to test if composite zonal scaffolds seeded with hADSC and cultured with differentiation medium produced fibrocartilage-like tissue different from that formed in noncomposite scaffolds. After 21 days of culture, hADSCs seeded on composite scaffolds afforded an extracellular matrix with aggrecan, whereas hADSCs seeded on noncomposite collagen I scaffolds formed a matrix-like fibrocartilage without aggrecan.


Assuntos
Menisco , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Engenharia Tecidual , Agrecanas , Colágeno Tipo I/farmacologia , Colágeno/farmacologia , Regeneração
2.
Rev. colomb. biotecnol ; 19(2): 119-131, jul.-dic. 2017. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-900443

RESUMO

RESUMEN El cartílago articular es un tejido vulnerable a las lesiones de diferente etiología; siendo uno de los más afectados, el cartílago de la rodilla. Aunque la mayoría de los tratamientos convencionales reducen los síntomas, generalmente conducen a la formación de fibrocartílago; el cual, posee características diferentes a las del cartílago hialino de las articulaciones. Son pocas las aproximaciones terapéuticas que promueven el reemplazo del tejido dañado por cartílago hialino funcional; las más exitosas son las denominadas terapias avanzadas, que aplican células y productos de ingeniería de tejidos con el fin de estimular la regeneración del cartílago. La mayoría de ellas se basan en colocar soportes hechos con biomateriales de diferente origen, que sembrados o no con células exógenas o endógenas, reemplazan al cartílago dañado y promueven su regeneración. Este trabajo revisa algunas de las aproximaciones terapéuticas enfocadas en la regeneración del cartílago articular de rodilla; así como, los biomateriales más empleados en la elaboración de soportes para terapia celular e ingeniería de tejido cartilaginoso.


ABSTRACT The articular cartilage is prone to suffer lesions of different etiology, being the articular cartilage lesions of the knee the most common. Although most conventional treatments reduce symptoms they lead to the production of fibrocartilage, which has different characteristics than the hyaline cartilage of the joint. There are few therapeutic approaches that promote the replacement of damaged tissue by functional hyaline cartilage. Among them are the so-called advanced therapies, which use cells and tissue engineering products to promote cartilage regeneration. Most of them are based on scaffolds made of different biomaterials, which seeded or not with endogenous or exogenous cells, can be used as cartilage artificial replacement to improve joint function. This paper reviews some therapeutic approaches focused on the regeneration of articular cartilage of the knee and the biomaterials used to develop scaffolds for cell therapy and tissue engineering of cartilage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA