Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 444: 138643, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38340504

RESUMO

This work provided an accurate analytical method to perform a multitarget analysis of a variety of antimicrobials (AMs) including sulfonamides, tetracyclines, macrolides, fluoroquinolones and quinolones, one imidazole and one nitroimidazole, one triazole, one diaminopyridine and one derivative of Penicillium stoloniferum in vegetables. The analysis is performed using liquid-chromatography coupled to a low-resolution triple quadrupole mass spectrometer (UHPLC-MS/MS) to detect the target analytesor coupled to a high-resolution q-Orbitrap (HRMS) to monitor the formed transformation products (TPs). Both instruments were compared in terms of limits of quantification and matrix effect at the detection. The method was applied to determine the presence of AMs in organic and non-organic vegetables, where sulfadiazine and mycophenolic acid were detected. On the other hand, the transference of four AMs (trimethoprim, sulfamethazine, enrofloxacin, and chlortetracycline) from soils to lettuces was evaluated through controlled uptake experiments. The choice of AMs was based on the classification into different families, and on the fact that those AM families are the most frequently detected in the environment. In this case, each of the AMs with which the soils were contaminated were found in the exposed lettuces. Moreover, in both studies, specific TPs of the AMs were identified, posing the necessity of assessing their effects in relation to food and human safety.


Assuntos
Espectrometria de Massas em Tandem , Verduras , Humanos , Espectrometria de Massas em Tandem/métodos , Verduras/química , Cromatografia Líquida/métodos , Antibacterianos , Solo , Cromatografia Líquida de Alta Pressão/métodos
2.
Talanta ; 254: 124192, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527910

RESUMO

The extensive use of antibiotics in agriculture has led to the occurrence of residual drugs in different vegetables frequently consumed by humans. This could pose a potential threat to human health, not only because of the possible effects after ingestion but also because the transmission of antibiotic-resistant genes could occur. In this work, two accurate sample preparation procedures were developed and validated for the simultaneous analysis of sulfonamides (SAs) and tetracyclines (TCs) in four of the most widely consumed vegetables (lettuce, onion, tomato, and carrot) in Europe. The evaluated protocols were based on QuECHERS for extraction and subsequent clean-up by SPE (solid phase extraction) or dispersive SPE. Parameters affecting both extraction and clean-up were carefully evaluated and selected for accuracy of results and minimal matrix effect. Overall, apparent recoveries were above 70% for most of the target analytes with both analytical procedures, and adequate precision (RSD<30%) was obtained for all the matrices. The procedural limits of quantification (LOQPRO) values for SPE clean-up remained below 4.4 µg kg-1 for TCs in all vegetables except for chlortetracycline (CTC) in lettuce (11.3 µg kg-1) and 3.0 µg kg-1 for SAs, with the exception of sulfadiazine (SDZ) in onion (3.9 µg kg-1) and sulfathiazole (STZ) in carrot (5.0 µg kg-1). Lower LOQPRO values (0.1-3.7 µg kg-1) were obtained, in general, when dSPE clean-up was employed. Both methods were applied to twenty-five market vegetable samples from ecological and conventional agriculture and only sulfamethazine (SMZ) and sulfapyridine (SPD) were detected in lettuce at 1.2 µg kg-1 and 0.5 µg kg-1, respectively.


Assuntos
Sulfonamidas , Verduras , Humanos , Sulfonamidas/análise , Tetraciclinas/análise , Antibacterianos/análise , Sulfanilamida/análise , Lactuca , Cebolas , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão/métodos
3.
Sci Total Environ ; 806(Pt 3): 151262, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715212

RESUMO

The interest in contaminants of emerging concern (CECs) has increased lately due to their continued emission and potential ecotoxicological hazards. Wastewater treatment plants (WWTPs) are generally not capable of eliminating them and are considered the main pathway for CECs to the aquatic environment. The number of CECs in WWTPs effluents is often so large that complementary approaches to the conventional target analysis need to be implemented. Within this context, multitarget quantitative analysis (162 compounds) and a suspect screening (>40,000 suspects) approaches were applied to characterize the CEC fingerprint in effluents of five WWTPs in the Henares River basin (central Spain) during two sampling campaigns (summer and autumn). The results indicated that 76% of the compounds quantified corresponded to pharmaceuticals, 21% to pesticides and 3% to industrial chemicals. Apart from the 82 compounds quantified, suspect screening increased the list to 297 annotated compounds. Significant differences in the CEC fingerprint were observed between summer and autumn campaigns and between the WWTPs, being those serving the city of Alcalá de Henares the ones with the largest number of compounds and concentrations. Finally, a risk prioritization approach was applied based on risk quotients (RQs) for algae, invertebrates, and fish. Azithromycin, diuron, chlortoluron, clarithromycin, sertraline and sulfamethoxazole were identified as having the largest risks to algae. As for invertebrates, the compounds having the largest RQs were carbendazim, fenoxycarb and eprosartan, and for fish acetaminophen, DEET, carbendazim, caffeine, fluconazole, and azithromycin. The two WWTPs showing higher calculated Risk Indexes had tertiary treatments, which points towards the need of increasing the removal efficiency in urban WWTPs. Furthermore, considering the complex mixtures emitted into the environment and the low dilution capacity of Mediterranean rivers, we recommend the development of detailed monitoring plans and stricter regulations to control the chemical burden created to freshwater ecosystems.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Ecossistema , Monitoramento Ambiental , Rios , Espanha , Águas Residuárias/análise , Poluentes Químicos da Água/análise
4.
Chemosphere ; 274: 129964, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33979938

RESUMO

Suspect screening techniques are able to determine a broader range of compounds than traditional target analysis. However, the performance of the suspect techniques relies on the procedures implemented for peak annotation and for this, the list of potential candidates is clearly a limiting factor. In order to study this effect on the number of compounds annotated in environmental water samples, a method was validated in terms of absolute recoveries, limits of quantification and identification, as well as the peak picking capability of the software (Compound Discoverer 2.1) using a target list of 178 xenobiotics. Four suspect screening workflows using different suspect lists were compared: (i) the Stoffident list, (ii) all the NORMAN lists, (iii) suspects containing C, H, O, N, S, P, F or Cl in their molecular formula with more than 10 references in Chemspider and (iv) the mzCloud library. The results were compared in terms of the number of annotated compounds at each confidence level. The same 8 compounds (atenolol, caffeine, caprolactam, carbendazim, cotinine, diclofenac, propyphenazone and trimetoprim) were annotated at the highest confidence level using the four workflows. Remarkable differences were observed for lower confidence levels but only 4 features were annotated at different levels by the four workflows. While the third approach provided the highest number of annotated features, the workflow based on the mzCloud library rendered satisfactory results with a simpler approach. Finally, this latter approach was extended to the analysis of organic xenobiotics in different environmental water samples.


Assuntos
Poluentes Químicos da Água , Xenobióticos , Água , Poluentes Químicos da Água/análise , Fluxo de Trabalho
5.
Anal Methods ; 13(16): 1876-1904, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33913946

RESUMO

Suspect and non-target screening (SNTS) techniques are arising as new analytical strategies useful to disentangle the environmental occurrence of the thousands of exogenous chemicals present in our ecosystems. The unbiased discovery of the wide number of substances present over environmental analysis needs to find a consensus with powerful technical and computational requirements, as well as with the time-consuming unequivocal identification of discovered analytes. Within these boundaries, the potential applications of SNTS include the studies of environmental pollution in aquatic, atmospheric, solid and biological samples, the assessment of new compounds, transformation products and metabolites, contaminant prioritization, bioremediation or soil/water treatment evaluation, and retrospective data analysis, among many others. In this review, we evaluate the state of the art of SNTS techniques going over the normalized workflow from sampling and sample treatment to instrumental analysis, data processing and a brief review of the more recent applications of SNTS in environmental occurrence and exposure to xenobiotics. The main issues related to harmonization and knowledge gaps are critically evaluated and the challenges of their implementation are assessed in order to ensure a proper use of these promising techniques in the near future.

6.
Sci Total Environ ; 740: 139894, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32562984

RESUMO

The development of multitarget and/or suspect screening methods for the analysis of xenobiotics in fish samples is compulsory due to the lack of works in the literature where a deep evaluation of the variables affecting extraction and clean-up steps is performed. The aim of the present work was to optimize and validate a multitarget (180 compounds) method for the analysis of priority and emerging xenobiotics in fish muscle using focused ultrasound-assisted solid-liquid extraction. From the different extraction solvents studied, a single extraction in cold acetonitrile rendered the best consensus results in terms of absolute recoveries and the number of target compounds extracted. Matrix effect was minimized using commercially available Captiva ND-Lipid filters, which provided clean extracts and satisfactory repeatability compared to other approaches. Absolute recoveries were corrected using matrix-matched calibration and apparent recoveries in the 43%-105%, 73%-131% and 78%-128% ranges were obtained at low (20 ng g-1), medium (100 ng g-1), and high (200 ng g-1) spiking levels, respectively. A 60% of the xenobiotics showed limits of identification lower than 20 ng g-1. The developed method was successfully applied to the quantification and suspect screening of samples bought in a local market (hake, gilt-head bream, sea bass and prawn) and fished (thicklip grey mullet) at the Urdaibai estuary (north of Spain). Food additives, antiparasitic drugs and PFOS were quantified at ng g-1 level. Moreover, the targeted method was extended to the suspect screening, revealing the presence of plastic related products (caprolactam, phthalates, polyethylenglycols), pharmaceutical products (albendazole, mebendazole, valpromide) and pesticides or insect repellents (icaridin, myristyl sulfate, nootkatone). Therefore, FUSLE in cold acetonitrile combined with Captiva ND-Lipid filters and liquid chromatography tandem high-resolution mass spectrometry (LC-q-Orbitrap) were successfully applied to both multitarget quantitative analysis and suspect screening of approx. 17,800 compounds.


Assuntos
Peixes , Músculos/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Xenobióticos/análise , Animais , Extração em Fase Sólida , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA