Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 49(4): e12918, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317811

RESUMO

AIMS: Dynamin-2 is a large GTPase, a member of the dynamin superfamily that regulates membrane remodelling and cytoskeleton dynamics. Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM), a congenital neuromuscular disorder characterised by progressive weakness and atrophy of the skeletal muscles. Cognitive defects have been reported in some DNM2-linked CNM patients suggesting that these mutations can also affect the central nervous system (CNS). Here we studied how a dynamin-2 CNM-causing mutation influences the CNS function. METHODS: Heterozygous mice harbouring the p.R465W mutation in the dynamin-2 gene (HTZ), the most common causing autosomal dominant CNM, were used as disease model. We evaluated dendritic arborisation and spine density in hippocampal cultured neurons, analysed excitatory synaptic transmission by electrophysiological field recordings in hippocampal slices, and evaluated cognitive function by performing behavioural tests. RESULTS: HTZ hippocampal neurons exhibited reduced dendritic arborisation and lower spine density than WT neurons, which was reversed by transfecting an interference RNA against the dynamin-2 mutant allele. Additionally, HTZ mice showed defective hippocampal excitatory synaptic transmission and reduced recognition memory compared to the WT condition. CONCLUSION: Our findings suggest that the dynamin-2 p.R465W mutation perturbs the synaptic and cognitive function in a CNM mouse model and support the idea that this GTPase plays a key role in regulating neuronal morphology and excitatory synaptic transmission in the hippocampus.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Animais , Camundongos , Modelos Animais de Doenças , Dinamina II/genética , Dinamina II/metabolismo , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Neurônios/metabolismo , Transmissão Sináptica
2.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429074

RESUMO

Enhanced activity and overexpression of Pannexin 1 (Panx1) channels contribute to neuronal pathologies such as epilepsy and Alzheimer's disease (AD). The Panx1 channel ablation alters the hippocampus's glutamatergic neurotransmission, synaptic plasticity, and memory flexibility. Nevertheless, Panx1-knockout (Panx1-KO) mice still retain the ability to learn, suggesting that compensatory mechanisms stabilize their neuronal activity. Here, we show that the absence of Panx1 in the adult brain promotes a series of structural and functional modifications in the Panx1-KO hippocampal synapses, preserving spontaneous activity. Compared to the wild-type (WT) condition, the adult hippocampal neurons of Panx1-KO mice exhibit enhanced excitability, a more complex dendritic branching, enhanced spine maturation, and an increased proportion of multiple synaptic contacts. These modifications seem to rely on the actin-cytoskeleton dynamics as an increase in the actin polymerization and an imbalance between the Rac1 and the RhoA GTPase activities were observed in Panx1-KO brain tissues. Our findings highlight a novel interaction between Panx1 channels, actin, and Rho GTPases, which appear to be relevant for synapse stability.


Assuntos
Actinas , Conexinas , Animais , Camundongos , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo
3.
Neuroscientist ; 28(1): 41-58, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300419

RESUMO

Dynamin superfamily proteins (DSPs) comprise a large group of GTP-ases that orchestrate membrane fusion and fission, and cytoskeleton remodeling in different cell-types. At the central nervous system, they regulate synaptic vesicle recycling and signaling-receptor turnover, allowing the maintenance of synaptic transmission. In the presynapses, these GTP-ases control the recycling of synaptic vesicles influencing the size of the ready-releasable pool and the release of neurotransmitters from nerve terminals, whereas in the postsynapses, they are involved in AMPA-receptor trafficking to and from postsynaptic densities, supporting excitatory synaptic plasticity, and consequently learning and memory formation. In agreement with these relevant roles, an important number of neurological disorders are associated with mutations and/or dysfunction of these GTP-ases. Along the present review we discuss the importance of DSPs at synapses and their implication in different neuropathological contexts.


Assuntos
Neurônios , Transmissão Sináptica , Dinaminas/metabolismo , Humanos , Plasticidade Neuronal , Neurônios/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
4.
Front Cell Neurosci ; 14: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265655

RESUMO

Synaptic loss induced by soluble oligomeric forms of the amyloid ß peptide (sAßos) is one of the earliest events in Alzheimer's disease (AD) and is thought to be the major cause of the cognitive deficits. These abnormalities rely on defects in synaptic plasticity, a series of events manifested as activity-dependent modifications in synaptic structure and function. It has been reported that pannexin 1 (Panx1), a nonselective channel implicated in cell communication and intracellular signaling, modulates the induction of excitatory synaptic plasticity under physiological contexts and contributes to neuronal death under inflammatory conditions. Here, we decided to study the involvement of Panx1 in functional and structural defects observed in excitatory synapses of the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mice, an animal model of AD. We found an age-dependent increase in the Panx1 expression that correlates with increased Aß levels in hippocampal tissue from Tg mice. Congruently, we also observed an exacerbated Panx1 activity upon basal conditions and in response to glutamate receptor activation. The acute inhibition of Panx1 activity with the drug probenecid (PBN) did not change neurodegenerative parameters such as amyloid deposition or astrogliosis, but it significantly reduced excitatory synaptic defects in the AD model by normalizing long-term potentiation (LTP) and depression and improving dendritic arborization and spine density in hippocampal neurons of the Tg mice. These results suggest a major contribution of Panx1 in the early mechanisms leading to the synaptopathy in AD. Indeed, PBN induced a reduction in the activation of p38 mitogen-activated protein kinase (MAPK), a kinase widely implicated in the early neurotoxic signaling in AD. Our data strongly suggest that an enhanced expression and activation of Panx1 channels contribute to the Aß-induced cascades leading to synaptic dysfunction in AD.

5.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861684

RESUMO

Dysferlin is a transmembrane C-2 domain-containing protein involved in vesicle trafficking and membrane remodeling in skeletal muscle cells. However, the mechanism by which dysferlin regulates these cellular processes remains unclear. Since actin dynamics is critical for vesicle trafficking and membrane remodeling, we studied the role of dysferlin in Ca2+-induced G-actin incorporation into filaments in four different immortalized myoblast cell lines (DYSF2, DYSF3, AB320, and ER) derived from patients harboring mutations in the dysferlin gene. As compared with immortalized myoblasts obtained from a control subject, dysferlin expression and G-actin incorporation were significantly decreased in myoblasts from dysferlinopathy patients. Stable knockdown of dysferlin with specific shRNA in control myoblasts also significantly reduced G-actin incorporation. The impaired G-actin incorporation was restored by the expression of full-length dysferlin as well as dysferlin N-terminal or C-terminal regions, both of which contain three C2 domains. DYSF3 myoblasts also exhibited altered distribution of annexin A2, a dysferlin partner involved in actin remodeling. However, dysferlin N-terminal and C-terminal regions appeared to not fully restore such annexin A2 mislocation. Then, our results suggest that dysferlin regulates actin remodeling by a mechanism that does to not involve annexin A2.


Assuntos
Actinas/metabolismo , Disferlina/química , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mioblastos/citologia , Citoesqueleto de Actina/metabolismo , Actinas/genética , Adolescente , Adulto , Linhagem Celular , Disferlina/genética , Disferlina/metabolismo , Feminino , Humanos , Masculino , Distrofia Muscular do Cíngulo dos Membros/genética , Mioblastos/metabolismo , Domínios Proteicos
6.
J Neurochem ; 151(6): 703-715, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418818

RESUMO

ß-Subunits of the Ca2+ channel have been conventionally regarded as auxiliary subunits that regulate the expression and activity of the pore-forming α1 subunit. However, they comprise protein-protein interaction domains, such as a SRC homology 3 domain (SH3) domain, which make them potential signaling molecules. Here we evaluated the role of the ß2a subunit of the Ca2+ channels (CaV ß2a) and its SH3 domain (ß2a-SH3) in late stages of channel trafficking in bovine adrenal chromaffin cells. Cultured bovine adrenal chromaffin cells were injected with CaV ß2a or ß2a-SH3 under different conditions, in order to acutely interfere with endogenous associations of these proteins. As assayed by whole-cell patch clamp recordings, Ca2+ currents were reduced by CaV ß2a in the presence of exogenous α1-interaction domain. ß2a-SH3, but not its dimerization-deficient mutant, also reduced Ca2+ currents. Na+ currents were also diminished following ß2a-SH3 injection. Furthermore, ß2a-SH3 was still able to reduce Ca2+ currents when dynamin-2 function was disrupted, but not when SNARE-dependent exocytosis or actin polymerization was inhibited. Together with the additional finding that both CaV ß2a and ß2a-SH3 diminished the incorporation of new actin monomers to cortical actin filaments, ß2a-SH3 emerges as a signaling module that might down-regulate forward trafficking of ion channels by modulating actin dynamics.


Assuntos
Actinas/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células Cromafins/metabolismo , Regulação para Baixo/fisiologia , Domínios de Homologia de src/fisiologia , Animais , Bovinos , Células Cultivadas , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Coelhos
7.
Front Cell Neurosci ; 12: 189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30034324

RESUMO

In humans, Down Syndrome (DS) is a condition caused by partial or full trisomy of chromosome 21. Genes present in the DS critical region can result in excess gene dosage, which at least partially can account for DS phenotype. Although regulator of calcineurin 1 (RCAN1) belongs to this region and its ectopic overexpression in neurons impairs transmitter release, synaptic plasticity, learning and memory, the relative contribution of RCAN1 in a context of DS has yet to be clarified. In the present work, we utilized an in vitro model of DS, the CTb neuronal cell line derived from the brain cortex of a trisomy 16 (Ts16) fetal mouse, which reportedly exhibits acetylcholine release impairments compared to CNh cells (a neuronal cell line established from a normal littermate). We analyzed single exocytotic events by using total internal reflection fluorescence microscopy (TIRFM) and the vesicular acetylcholine transporter fused to the pH-sensitive green fluorescent protein (VAChT-pHluorin) as a reporter. Our analyses showed that, compared with control CNh cells, the trisomic CTb cells overexpress RCAN1, and they display a reduced number of Ca2+-induced exocytotic events. Remarkably, RCAN1 knockdown increases the extent of exocytosis at levels comparable to those of CNh cells. These results support a critical contribution of RCAN1 to the exocytosis process in the trisomic condition.

8.
Front Mol Neurosci ; 11: 114, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692709

RESUMO

Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

9.
Neurotox Res ; 32(4): 614-623, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28695546

RESUMO

The Na+/myo-inositol cotransporter (SMIT1) is overexpressed in human Down syndrome (DS) and in trisomy 16 fetal mice (Ts16), an animal model of the human condition. SMIT1 overexpression determines increased levels of intracellular myo-inositol, a precursor of phophoinositide synthesis. SMIT1 is overexpressed in CTb cells, an immortalized cell line established from the cerebral cortex of a Ts16 mouse fetus. CTb cells exhibit impaired cytosolic Ca2+ signals in response to glutamatergic and cholinergic stimuli (increased amplitude and delayed time-dependent kinetics in the decay post-stimulation), compared to our CNh cell line, derived from the cerebral cortex of a euploid animal. Considering the role of myo-inositol in intracellular signaling, we normalized SMIT1 expression in CTb cells using specific mRNA antisenses. Forty-eight hours post-transfection, SMIT1 levels in CTb cells reached values comparable to those of CNh cells. At this time, decay kinetics of Ca2+ signals induced by either glutamate, nicotine, or muscarine were accelerated in transfected CTb cells, to values similar to those of CNh cells. The amplitude of glutamate-induced cytosolic Ca2+ signals in CTb cells was also normalized. The results suggest that SMIT1 overexpression contributes to abnormal cholinergic and glutamatergic Ca2+ signals in the trisomic condition, and knockdown of DS-related genes in our Ts16-derived cell line could constitute a relevant tool to study DS-related neuronal dysfunction.


Assuntos
Córtex Cerebral/metabolismo , Colinérgicos/farmacologia , Ácido Glutâmico/metabolismo , Simportadores/metabolismo , Acetilcolina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Córtex Cerebral/efeitos dos fármacos , Cromossomos Humanos Par 16/genética , Cromossomos Humanos Par 16/metabolismo , Modelos Animais de Doenças , Síndrome de Down/genética , Feto/efeitos dos fármacos , Camundongos , Mosaicismo , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Simportadores/genética , Trissomia/genética
10.
Sci Rep ; 7(1): 4580, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676641

RESUMO

Dynamin-2 is a ubiquitously expressed GTP-ase that mediates membrane remodeling. Recent findings indicate that dynamin-2 also regulates actin dynamics. Mutations in dynamin-2 cause dominant centronuclear myopathy (CNM), a congenital myopathy characterized by progressive weakness and atrophy of skeletal muscles. However, the muscle-specific roles of dynamin-2 affected by these mutations remain elusive. Here we show that, in muscle cells, the GTP-ase activity of dynamin-2 is involved in de novo actin polymerization as well as in actin-mediated trafficking of the glucose transporter GLUT4. Expression of dynamin-2 constructs carrying CNM-linked mutations disrupted the formation of new actin filaments as well as the stimulus-induced translocation of GLUT4 to the plasma membrane. Similarly, mature muscle fibers isolated from heterozygous knock-in mice that harbor the dynamin-2 mutation p.R465W, an animal model of CNM, exhibited altered actin organization, reduced actin polymerization and impaired insulin-induced translocation of GLUT4 to the sarcolemma. Moreover, GLUT4 displayed aberrant perinuclear accumulation in biopsies from CNM patients carrying dynamin-2 mutations, further suggesting trafficking defects. These results suggest that dynamin-2 is a key regulator of actin dynamics and GLUT4 trafficking in muscle cells. Our findings also support a model in which impairment of actin-dependent trafficking contributes to the pathological mechanism in dynamin-2-associated CNM.


Assuntos
Actinas/metabolismo , Dinamina II/genética , Predisposição Genética para Doença , Células Musculares/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Actinas/química , Animais , Modelos Animais de Doenças , Dinamina II/metabolismo , Ativação Enzimática , Expressão Gênica , Estudos de Associação Genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Camundongos , Mioblastos/metabolismo , Miopatias Congênitas Estruturais/patologia , Ligação Proteica , Multimerização Proteica , Transporte Proteico
11.
Front Cell Neurosci ; 11: 130, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28522963

RESUMO

Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells.

12.
Front Cell Neurosci ; 10: 184, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507935

RESUMO

Under basal conditions the action potential firing rate of adrenal chromaffin cells is lower than 0.5 Hz. The maintenance of the secretory response at such frequencies requires a continuous replenishment of releasable vesicles. However, the mechanism that allows such vesicle replenishment remains unclear. Here, using membrane capacitance measurements on mouse chromaffin cells, we studied the mechanism of replenishment of a group of vesicles released by a single action potential-like stimulus (APls). The exocytosis triggered by APls (ETAP) represents a fraction (40%) of the immediately releasable pool, a group of vesicles highly coupled to voltage dependent calcium channels. ETAP was replenished with a time constant of 0.73 ± 0.11 s, fast enough to maintain synchronous exocytosis at 0.2-0.5 Hz stimulation. Regarding the mechanism involved in rapid ETAP replenishment, we found that it depends on the ready releasable pool; indeed depletion of this vesicle pool significantly delays ETAP replenishment. On the other hand, ETAP replenishment also correlates with a dynamin-dependent fast endocytosis process (τ = 0.53 ± 0.01 s). In this regard, disruption of dynamin function markedly inhibits the fast endocytosis and delays ETAP replenishment, but also significantly decreases the synchronous exocytosis during repetitive APls stimulation at low frequencies (0.2 and 0.5 Hz). Considering these findings, we propose a model in where both the transfer of vesicles from ready releasable pool and fast endocytosis allow rapid ETAP replenishment during low stimulation frequencies.

13.
Exp Neurol ; 283(Pt A): 246-54, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27349407

RESUMO

Mutations in the dysferlin gene are linked to a group of muscular dystrophies known as dysferlinopathies. These myopathies are characterized by progressive atrophy. Studies in muscle tissue from dysferlinopathy patients or dysferlin-deficient mice point out its importance in membrane repair. However, expression of dysferlin homologous proteins that restore sarcolemma repair function in dysferlinopathy animal models fail to arrest muscle wasting, therefore suggesting that dysferlin plays other critical roles in muscle function. In the present review, we discuss dysferlin functions in the skeletal muscle, as well as pathological mechanisms related to dysferlin mutations. Particular focus is presented related the effect of dysferlin on cell membrane related function, which affect its repair, vesicle trafficking, as well as Ca(2+) homeostasis. Such mechanisms could provide accessible targets for pharmacological therapies.


Assuntos
Proteínas de Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação/genética , Animais , Cálcio/metabolismo , Conexinas/metabolismo , Disferlina , Homeostase/genética , Humanos , Músculo Esquelético/patologia
14.
PLoS One ; 9(6): e99001, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901433

RESUMO

The cortical actin network is dynamically rearranged during secretory processes. Nevertheless, it is unclear how de novo actin polymerization and the disruption of the preexisting actin network control transmitter release. Here we show that in bovine adrenal chromaffin cells, both formation of new actin filaments and disruption of the preexisting cortical actin network are induced by Ca2+ concentrations that trigger exocytosis. These two processes appear to regulate different stages of exocytosis; whereas the inhibition of actin polymerization with the N-WASP inhibitor wiskostatin restricts fusion pore expansion, thus limiting the release of transmitters, the disruption of the cortical actin network with cytochalasin D increases the amount of transmitter released per event. Further, the Src kinase inhibitor PP2, and cSrc SH2 and SH3 domains also suppress Ca2+-dependent actin polymerization, and slow down fusion pore expansion without disturbing the cortical F-actin organization. Finally, the isolated SH3 domain of c-Src prevents both the disruption of the actin network and the increase in the quantal release induced by cytochalasin D. These findings support a model where a rise in the cytosolic Ca2+ triggers actin polymerization through a mechanism that involves Src kinases. The newly formed actin filaments would speed up the expansion of the initial fusion pore, whereas the preexisting actin network might control a different step of the exocytosis process.


Assuntos
Actinas/metabolismo , Células Cromafins/metabolismo , Quinases da Família src/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Cálcio/farmacologia , Bovinos , Células Cultivadas , Células Cromafins/citologia , Células Cromafins/efeitos dos fármacos , Citocalasina D/farmacologia , Exocitose/efeitos dos fármacos , Cinética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Quinases da Família src/química , Quinases da Família src/genética
15.
J Neurochem ; 128(2): 210-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102355

RESUMO

Dynamin-2 is a pleiotropic GTPase whose best-known function is related to membrane scission during vesicle budding from the plasma or Golgi membranes. In the nervous system, dynamin-2 participates in synaptic vesicle recycling, post-synaptic receptor internalization, neurosecretion, and neuronal process extension. Some of these functions are shared with the other two dynamin isoforms. However, the involvement of dynamin-2 in neurological illnesses points to a critical function of this isoform in the nervous system. In this regard, mutations in the dynamin-2 gene results in two congenital neuromuscular disorders. One of them, Charcot-Marie-Tooth disease, affects myelination and peripheral nerve conduction, whereas the other, Centronuclear Myopathy, is characterized by a progressive and generalized atrophy of skeletal muscles, yet it is also associated with abnormalities in the nervous system. Furthermore, single nucleotide polymorphisms located in the dynamin-2 gene have been associated with sporadic Alzheimer's disease. In the present review, we discuss the pathogenic mechanisms implicated in these neurological disorders.


Assuntos
Dinamina II/metabolismo , Doenças do Sistema Nervoso/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/anormalidades , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Dinamina II/genética , Endocitose , Humanos , Músculo Esquelético/patologia , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/patologia , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/metabolismo , Vesículas Sinápticas/metabolismo
16.
Front Endocrinol (Lausanne) ; 4: 126, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24065954

RESUMO

Dynamin-2 is a ubiquitously expressed mechano-GTPase involved in different stages of the secretory pathway. Its most well-known function relates to the scission of nascent vesicles from the plasma membrane during endocytosis; however, it also participates in the formation of new vesicles from the Golgi network, vesicle trafficking, fusion processes and in the regulation of microtubule, and actin cytoskeleton dynamics. Over the last 8 years, more than 20 mutations in the dynamin-2 gene have been associated to two hereditary neuromuscular disorders: Charcot-Marie-Tooth neuropathy and centronuclear myopathy. Most of these mutations are grouped in the pleckstrin homology domain; however, there are no common mutations associated with both disorders, suggesting that they differently impact on dynamin-2 function in diverse tissues. In this review, we discuss the impact of these disease-related mutations on dynamin-2 function during vesicle trafficking and endocytotic processes.

17.
PLoS One ; 8(8): e70638, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23940613

RESUMO

Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin's ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Células Cromafins/metabolismo , Dinamina II/fisiologia , Animais , Catecolaminas/metabolismo , Bovinos , Células Cultivadas , Exocitose , Expressão Gênica , Fusão de Membrana , Multimerização Proteica , Vesículas Secretórias/metabolismo
18.
J Neurosci ; 30(32): 10683-91, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20702699

RESUMO

Although synaptophysin is one of the most abundant integral proteins of synaptic vesicle membranes, its contribution to neurotransmitter release remains unclear. One possibility is that through its association with dynamin it controls the fine tuning of transmitter release. To test this hypothesis, we took advantage of amperometric measurements of quantal catecholamine release from chromaffin cells. First, we showed that synaptophysin and dynamin interact in chromaffin granule-rich fractions and that this interaction relies on the C terminal of synaptophysin. Experimental maneuvers that are predicted to disrupt the association between these two proteins, such as injection of antibodies against dynamin or synaptophysin, or peptides homologous to the C terminal of synaptophysin, increased the quantal size and duration of amperometric spikes. In contrast, the amperometric current that precedes the spike remained unchanged, indicating that synaptophysin/dynamin association does not regulate the initial fusion pore, but it appears to target a later step of exocytosis to control the amount of catecholamines released during a single vesicle fusion event.


Assuntos
Células Cromafins/metabolismo , Dinaminas/metabolismo , Exocitose/fisiologia , Sinaptofisina/metabolismo , Animais , Anticorpos/farmacologia , Bovinos , Células Cultivadas , Células Cromafins/ultraestrutura , Grânulos Cromafim/efeitos dos fármacos , Grânulos Cromafim/metabolismo , Dinaminas/genética , Dinaminas/imunologia , Eletroquímica/métodos , Exocitose/efeitos dos fármacos , Imunoprecipitação/métodos , Microinjeções , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Sinaptofisina/química , Sinaptofisina/genética , Sinaptofisina/imunologia , Proteína 2 Associada à Membrana da Vesícula/metabolismo
19.
J Neurochem ; 103(4): 1574-81, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17760862

RESUMO

Various studies have focused in the relative contribution of different voltage-activated Ca(2+) channels (VACC) to total transmitter release. However, how Ca(2+) entry through a given VACC subtype defines the pattern of individual exocytotic events remains unknown. To address this question, we have used amperometry in bovine chromaffin cells. L, N, and P/Q channels were individually or jointly blocked with furnidipine, omega-conotoxin GVIA, omega-agatoxin IVA, or omega-conotoxin MVIIC. The three channel types contributed similarly to cytosolic Ca(2+) signals induced by 70 mmol/L K(+). However, they exhibited different contributions to the frequency of exocytotic events and they were shown to differently regulate the final steps of the exocytosis. When compared with the other VACC subtypes, Ca(2+) entry through P/Q channels effectively induced exocytosis, it decreased fusion pore stability and accelerated its expansion. Conversely, Ca(2+) entry through N channels was less efficient in inducing exocytotic events, also slowing fusion pore expansion. Finally, Ca(2+) entry through L channels inefficiently induced exocytosis, and the individual blockade of this channel significantly modified fusion pore dynamics. The distance between a given VACC subtype and the release sites could account for the differential effects of the distinct VACC on the fusion pore dynamics.


Assuntos
Canais de Cálcio/classificação , Canais de Cálcio/fisiologia , Cálcio/fisiologia , Potenciais de Ação/fisiologia , Medula Suprarrenal/metabolismo , Medula Suprarrenal/fisiologia , Animais , Cálcio/metabolismo , Bovinos , Exocitose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA