Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 257: 153343, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387853

RESUMO

Cyclodipeptides (CDPs) are the smallest peptidic molecules that can be produced by diverse organisms such as bacteria, fungi, and animals. They have multiple biological effects. In this paper, we examined the CDPs produced by the bacteria Pseudomonas aeruginosa PAO1, which are known as opportunistic pathogens of humans and plants on TARGET OF RAPAMYCIN (TOR) signaling pathways, and regulation of root system architecture. This bacterium produces the bioactive CDPs: cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Tyr), and cyclo(L-Pro-L-Val). In a previous report, these molecules were found to modulate basic cellular programs not only via auxin mechanisms but also by promoting the phosphorylation of the S6 ribosomal protein kinase (S6K), a downstream substrate of the TOR kinase. In the present work, we found that the inoculation of Arabidopsis plants with P. aeruginosa PAO1, the non-pathogenic P. aeruginosa ΔlasI/Δrhll strain (JM2), or by direct exposure of plants to CDPs influenced growth and promoted root branching depending upon the treatment imposed, while genetic evidence using Arabidopsis lines with enhanced or decreased TOR levels indicated a critical role of this pathway in the bacterial phytostimulation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Proteínas de Bactérias/fisiologia , Proteínas de Plantas/genética , Pseudomonas aeruginosa/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Dipeptídeos/fisiologia , Peptídeos Cíclicos/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
PeerJ ; 7: e7494, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523498

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an opportunistic and pathogenic bacterium with the ability to produce cyclodipeptides (CDPs), which belong to a large family of molecules with important biological activities. Excessive amounts of CDPs produced by Pseudomonas strains can activate an auxin response in Arabidopsis thaliana and promote plant growth. Target of rapamycin (TOR) is an evolutionarily conserved eukaryotic protein kinase that coordinates cell growth and metabolic processes in response to environmental and nutritional signals. Target of rapamycin kinase phosphorylates various substrates, of which S6 ribosomal protein kinase (S6K) is particularly well known. The PI3K/Akt/mTOR/S6K signaling pathway has been studied extensively in mammals because of its association with fundamental biological processes including cell differentiation. However, evidences suggest that this pathway also has specific and conserved functions in plants and may thus be conserved, as are several of its components like TOR complex 1 and S6K proteins. In plants, TOR-S6K signaling has been shown to be modulated in response to plant growth promoters or stressors. METHODS: In this study, we evaluated the effects of P. aeruginosa CDPs on the growth and root development of maize plants (Zea mays L.) by adding different CDPs concentrations on culture plant media, as well as the effect on the phosphorylation of the maize S6K protein (ZmS6K) by protein electrophoresis and western blot. RESULTS: Our results showed that P. aeruginosa CDPs promoted maize growth and development, including modifications in the root system architecture, correlating with the increased ZmS6K phosphorylation and changes induced in electrophoretic mobility, suggesting post-translational modifications on ZmS6K. These findings suggest that the plant growth-promoting effect of the Pseudomonas genus, associated with the CDPs production, involves the TOR/S6K signaling pathway as a mechanism of plant growth and root development in plant-microorganism interaction.

3.
FEMS Yeast Res ; 15(8)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26363023

RESUMO

In Candida albicans, cyanide and antimycin A inhibited K(+) transport, not only with ethanol-O2 as the substrate, but also with glucose. The reason for this was that they inhibited not only respiration, but also fermentation, decreasing ATP production. Measurements of oxygen levels in cell suspensions allowed identification of the electron pathways involved. NADH fluorescence levels increased in the presence of the inhibitors, indirectly indicating lower levels of NAD(+) and so pointing to glyceraldehyde-3-phosphate dehydrogenase as the limiting step responsible for the inhibition of glycolysis, which was confirmed by the levels of glycolytic intermediaries. The cyanide effect could be reversed by hydrogen peroxide, mainly due to an activity by which H2O2 can be reduced by electrons flowing from NADH through a pathway that can be inhibited by antimycin A, and appears to be a cytochrome c peroxidase. Therefore, the inhibition of glycolysis by the respiratory inhibitors seems to be due to the decreased availability of NAD(+), resulting in a decreased activity of glyceraldehyde-3-phosphate dehydrogenase. Compartmentalization of pyridine nucleotides in favor of the mitochondria can contribute to explaining the low fermentation capacity of C. albicans. Similar results were obtained with three C. albicans strains, Candida dubliniensis and, to a lower degree, Candida parapsilosis.


Assuntos
Antimicina A/toxicidade , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Cianetos/toxicidade , Glicólise/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , NAD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA