Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 17(5): e13691, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707994

RESUMO

Effective population size (N e) is a pivotal evolutionary parameter with crucial implications in conservation practice and policy. Genetic methods to estimate N e have been preferred over demographic methods because they rely on genetic data rather than time-consuming ecological monitoring. Methods based on linkage disequilibrium (LD), in particular, have become popular in conservation as they require a single sampling and provide estimates that refer to recent generations. A software program based on the LD method, GONE, looks particularly promising to estimate contemporary and recent-historical N e (up to 200 generations in the past). Genomic datasets from non-model species, especially plants, may present some constraints to the use of GONE, as linkage maps and reference genomes are seldom available, and SNP genotyping is usually based on reduced-representation methods. In this study, we use empirical datasets from four plant species to explore the limitations of plant genomic datasets when estimating N e using the algorithm implemented in GONE, in addition to exploring some typical biological limitations that may affect N e estimation using the LD method, such as the occurrence of population structure. We show how accuracy and precision of N e estimates potentially change with the following factors: occurrence of missing data, limited number of SNPs/individuals sampled, and lack of information about the location of SNPs on chromosomes, with the latter producing a significant bias, previously unexplored with empirical data. We finally compare the N e estimates obtained with GONE for the last generations with the contemporary N e estimates obtained with the programs currentNe and NeEstimator.

2.
Mol Ecol ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962106

RESUMO

Local survival of forest tree populations under climate change depends on existing genetic variation and their adaptability to changing environments. Responses to selection were studied in European beech (Fagus sylvatica) under field conditions. A total of 1087 adult trees, seeds, 1-year-old seedlings and established multiyear saplings were genotyped with 16 nuSSRs. Adult trees were assessed for phenotypic traits related to growth, phenology and reproduction. Parentage and paternity analyses were used to estimate effective female and male fecundity as a proxy of fitness and showed that few parents contributed to successful regeneration. Selection gradients were estimated from the relationship between traits and fecundity, while heritability and evolvability were estimated using mixed models and the breeder's equation. Larger trees bearing more fruit and early male flowering had higher total fecundity, while trees with longer growth season had lower total fecundity (directional selection). Stabilizing selection on spring phenology was found for female fecundity, highlighting the role of late frosts as a selection driver. Selection gradients for other traits varied between measurement years and the offspring cohort used to estimate parental fecundity. Compared to other studies in natural populations, we found low to moderate heritability and evolvability for most traits. Response to selection was higher for growth than for budburst, leaf senescence or reproduction traits, reflecting more consistent selection gradients across years and sex functions, and higher phenotypic variability in the population. Our study provides empirical evidence suggesting that populations of long-lived organisms such as forest trees can adapt locally, even at short-time scales.

3.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37832225

RESUMO

New mutations provide the raw material for evolution and adaptation. The distribution of fitness effects (DFE) describes the spectrum of effects of new mutations that can occur along a genome, and is, therefore, of vital interest in evolutionary biology. Recent work has uncovered striking similarities in the DFE between closely related species, prompting us to ask whether there is variation in the DFE among populations of the same species, or among species with different degrees of divergence, that is whether there is variation in the DFE at different levels of evolution. Using exome capture data from six tree species sampled across Europe we characterized the DFE for multiple species, and for each species, multiple populations, and investigated the factors potentially influencing the DFE, such as demography, population divergence, and genetic background. We find statistical support for the presence of variation in the DFE at the species level, even among relatively closely related species. However, we find very little difference at the population level, suggesting that differences in the DFE are primarily driven by deep features of species biology, and those evolutionarily recent events, such as demographic changes and local adaptation, have little impact.


Assuntos
Aptidão Genética , Modelos Genéticos , Mutação , Exoma , Europa (Continente) , Evolução Molecular
4.
Heredity (Edinb) ; 131(1): 68-78, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37221230

RESUMO

How evolutionary forces interact to maintain genetic variation within populations has been a matter of extensive theoretical debates. While mutation and exogenous gene flow increase genetic variation, stabilizing selection and genetic drift are expected to deplete it. To date, levels of genetic variation observed in natural populations are hard to predict without accounting for other processes, such as balancing selection in heterogeneous environments. We aimed to empirically test three hypotheses: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e., experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from heterogeneous environments. Using growth, phenological and functional trait data from three clonal common gardens and 33 populations (522 clones) of maritime pine (Pinus pinaster Aiton), we estimated the association between the population-specific total genetic variances (i.e., among-clone variances) for these traits and ten population-specific indices related to admixture levels (estimated based on 5165 SNPs), environmental temporal and spatial heterogeneity and climate harshness. Populations experiencing colder winters showed consistently lower genetic variation for early height growth (a fitness-related trait in forest trees) in the three common gardens. Within-population quantitative genetic variation was not associated with environmental heterogeneity or population admixture for any trait. Our results provide empirical support for the potential role of natural selection in reducing genetic variation for early height growth within populations, which indirectly gives insight into the adaptive potential of populations to changing environments.


Assuntos
Pinus , Pinus/genética , Clima , Fenótipo , Florestas , Árvores/genética , Seleção Genética
5.
Mol Ecol ; 32(2): 393-411, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301304

RESUMO

Microgeographical adaptation occurs when the effects of directional selection persist despite gene flow. Traits and genetic loci under selection can then show adaptive divergence, against the backdrop of little differentiation at other traits or loci. How common such events are and how strong the selection is that underlies them remain open questions. Here, we discovered and analysed microgeographical patterns of genomic divergence in four European and Mediterranean conifers with widely differing life-history traits and ecological requirements (Abies alba MIll., Cedrus atlantica [Endl.] Manetti, Pinus halepensis Mill. and Pinus pinaster Aiton) by screening pairs from geographically close forest stands sampled along steep ecological gradients. We inferred patterns of genomic divergence by applying a combination of divergence outlier detection methods, demographic modelling, Approximate Bayesian Computation inferences and genomic annotation to genomic data. Surprisingly for such small geographical scales, we showed that selection is strong in all species but generally affects different loci in each. A clear signature of selection was systematically detected on a fraction of the genome, of the order of 0.1%-1% of the loci depending on the species. The novel modelling method we designed for estimating selection coefficients showed that the microgeographical selection coefficient scaled by population size (Ns) was 2-30. Our results convincingly suggest that selection maintains within-population diversity at microgeographical scales in spatially heterogeneous environments. Such genetic diversity is likely to be a major reservoir of adaptive potential, helping populations to adapt under fluctuating environmental conditions.


Assuntos
Variação Genética , Seleção Genética , Variação Genética/genética , Teorema de Bayes , Adaptação Fisiológica/genética , Aclimatação
6.
Am Nat ; 200(4): E141-E159, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36150196

RESUMO

AbstractPopulation response functions based on climatic and phenotypic data from common gardens have long been the gold standard for predicting quantitative trait variation in new environments. However, prediction accuracy might be enhanced by incorporating genomic information that captures the neutral and adaptive processes behind intrapopulation genetic variation. We used five clonal common gardens containing 34 provenances (523 genotypes) of maritime pine (Pinus pinaster Aiton) to determine whether models combining climatic and genomic data capture the underlying drivers of height growth variation and thus improve predictions at large geographical scales. The plastic component explained most of the height growth variation, probably resulting from population responses to multiple environmental factors. The genetic component stemmed mainly from climate adaptation and the distinct demographic and selective histories of the different maritime pine gene pools. Models combining climate of origin and gene pool of the provenances as well as height-associated positive-effect alleles (PEAs) captured most of the genetic component of height growth and better predicted new provenances compared with the climate-based population response functions. Regionally selected PEAs were better predictors than globally selected PEAs, showing high predictive ability in some environments even when included alone in the models. These results are therefore promising for the future use of genome-based prediction of quantitative traits.


Assuntos
Pinus , Árvores , Florestas , Genômica , Pinus/genética , Plásticos , Árvores/genética
7.
Hortic Res ; 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35039864

RESUMO

Leptospermum scoparium J. R. Forst et G. Forst, known as manuka by Maori, the indigenous people of Aotearoa (New Zealand), is a culturally and economically significant shrub species, native to New Zealand and Australia. Chemical, morphological and phylogenetic studies have indicated geographical variation of manuka across its range in New Zealand, and genetic differentiation between New Zealand and Australia. We used pooled whole genome re-sequencing of 76 L. scoparium and outgroup populations from New Zealand and Australia to compile a dataset totalling ~2.5 million SNPs. We explored the genetic structure and relatedness of L. scoparium across New Zealand, and between populations in New Zealand and Australia, as well as the complex demographic history of this species. Our population genomic investigation suggests there are five geographically distinct manuka gene pools within New Zealand, with evidence of gene flow occurring between these pools. Demographic modelling suggests three of these gene pools have undergone expansion events, whilst the evolutionary histories of the remaining two have been subjected to contractions. Furthermore, manuka populations in New Zealand are genetically distinct from populations in Australia, with coalescent modelling suggesting these two clades diverged ~9-12 million years ago. We discuss the evolutionary history of this species and the benefits of using pool-seq for such studies. Our research will support the management and conservation of manuka by landowners, particularly Maori, and the development of a provenance story for the branding of manuka based products.

8.
Am J Bot ; 109(4): 602-615, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35067917

RESUMO

PREMISE: Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion. Here we study adaptation in the short-lived species Leontodon longirostris showing reduced genetic diversity and increased genetic load along an expansion route. METHODS: We assessed the phenological patterns of variation, and their effect on fitness-related traits, on 42 L. longirostris populations and six populations of the sister taxa L. saxatilis in a common garden located within the current range of both species. The comparison among L. longirostris populations allowed us to test for genetic clines consistent with local adaptation, whereas the comparison between taxa provided evidence for common adaptive features at the species level. RESULTS: We found significant within-species variability for most traits, as well as differences with its close relative L. saxatilis. In general, seeds from drier, warmer, and unpredictable habitats showed overall lower and more restricted conditions for germination, seedlings emerged later and plants flowered earlier. Consequently, genotypes from arid and unpredictable environments attained smaller reproductive sizes and allocated more biomass to reproduction. Flowering time had the strongest direct effect on total plant size, but seedling emergence also showed an important indirect effect. CONCLUSIONS: Our results show the crucial role of phenological patterns in shaping adaptive clines for major life-history stage transitions. Furthermore, the genetic load observed in L. longirostris does not seem to preclude adaptation to the climatic variability encountered along the expansion route.


Assuntos
Adaptação Fisiológica , Asteraceae , Aclimatação , Germinação , Fenótipo , Plantas
9.
Mol Ecol ; 31(7): 2089-2105, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35075727

RESUMO

A decade of genetic association studies in multiple organisms suggests that most complex traits are polygenic; that is, they have a genetic architecture determined by numerous loci, each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and time is crucial to understand the genetic basis of phenotypic variation. We applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait., maritime pine) and to analyse this variation across environments and years. We evaluated five categories of fitness-related traits (survival, height, phenology, functional, and biotic-stress response) in a clonal common-garden network planted in contrasted environments (over 20,500 trees). Most of the analysed traits showed evidence of local adaptation based on Qst -Fst comparisons. We further observed a remarkably stable degree of polygenicity, averaging 6% (range of 0%-27%), across traits, environments and years. We detected evidence of negative selection, which could explain, at least partially, the high degree of polygenicity. Because polygenic adaptation can occur rapidly, our results suggest that current predictions on the capacity of natural forest tree populations to adapt to new environments should be revised, especially in the current context of climate change.


Assuntos
Pinaceae , Pinus , Aclimatação , Herança Multifatorial/genética , Fenótipo , Pinus/genética , Árvores
10.
Evol Appl ; 14(12): 2750-2772, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950227

RESUMO

Forest ecosystems are increasingly challenged by extreme events, for example, drought, storms, pest attacks, and fungal pathogen outbreaks, causing severe ecological and economic losses. Understanding the genetic basis of adaptive traits in tree species is of key importance to preserve forest ecosystems, as genetic variation in a trait (i.e., heritability) determines its potential for human-mediated or evolutionary change. Maritime pine (Pinus pinaster Aiton), a conifer widely distributed in southwestern Europe and northwestern Africa, grows under contrasted environmental conditions promoting local adaptation. Genetic variation at adaptive phenotypes, including height, spring phenology, and susceptibility to two fungal pathogens (Diplodia sapinea and Armillaria ostoyae) and an insect pest (Thaumetopoea pityocampa), was assessed in a range-wide clonal common garden of maritime pine. Broad-sense heritability was significant for height (0.219), spring phenology (0.165-0.310), and pathogen susceptibility (necrosis length caused by D. sapinea, 0.152; and by A. ostoyae, 0.021, measured on inoculated, excised branches under controlled conditions), but not for pine processionary moth incidence in the common garden. The correlations of trait variation among populations revealed contrasting trends for pathogen susceptibility to D. sapinea and A. ostoyae with respect to height. Taller trees showed longer necrosis length caused by D. sapinea while shorter trees were more affected by A. ostoyae. Moreover, maritime pine populations from areas with high summer temperatures and frequent droughts were less susceptible to D. sapinea but more susceptible to A. ostoyae. Finally, an association study using 4227 genome-wide SNPs revealed several loci significantly associated with each trait (range of 3-26), including a possibly disease-induced translation initiation factor, eIF-5, associated with needle discoloration caused by D. sapinea. This study provides important insights to develop genetic conservation and breeding strategies integrating species responses to biotic stressors.

11.
Plant Mol Biol ; 106(4-5): 367-380, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33934278

RESUMO

KEY MESSAGE: Complementary gene-resequencing and transcriptomic approaches reveal contrasted evolutionary histories in a species complex. Pinus halepensis and Pinus brutia are closely related species that can intercross, but occupy different geographical ranges and bioclimates. To study the evolution of this species complex and to provide genomic resources for further research, we produce and analyze two new complementary sets of genetic resources: (i) a set of 172 re-sequenced genomic target loci analyzed in 45 individuals, and (ii) a set of 11 transcriptome assemblies. These two datasets provide insights congruent with previous studies: P. brutia displays high level of genetic diversity and no genetic sub-structure, while P. halepensis shows three main genetic clusters, the western Mediterranean and North African clusters displaying much lower genetic diversity than the eastern Mediterranean cluster, the latter cluster having similar genetic diversity to P. brutia. In addition, these datasets provide new insights on the timing of the species-complex history: the two species would have split at the end of the tertiary, and the changing climatic conditions of the Mediterranean region at the end of the Tertiary-beginning of the Quaternary, together with the distinct species tolerance to harsh climatic conditions would have resulted in different geographic distributions, demographic histories and genetic patterns of the two pines. The multiple glacial-interglacial cycles during the Quaternary would have led to the expansion of P. brutia in the Middle East, while P. halepensis would have been through bottlenecks. The last glaciations, from 0.6 Mya on, would have affected further the Western genetic pool of P. halepensis.


Assuntos
Evolução Molecular , Pinus/genética , DNA de Plantas , Conjuntos de Dados como Assunto , Marcadores Genéticos , Variação Genética , Genética Populacional , Filogenia , Pinus/classificação , Análise de Sequência de DNA , Transcriptoma
12.
Gigascience ; 10(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33734368

RESUMO

BACKGROUND: Progress in the field of evolutionary forest ecology has been hampered by the huge challenge of phenotyping trees across their ranges in their natural environments, and the limitation in high-resolution environmental information. FINDINGS: The GenTree Platform contains phenotypic and environmental data from 4,959 trees from 12 ecologically and economically important European forest tree species: Abies alba Mill. (silver fir), Betula pendula Roth. (silver birch), Fagus sylvatica L. (European beech), Picea abies (L.) H. Karst (Norway spruce), Pinus cembra L. (Swiss stone pine), Pinus halepensis Mill. (Aleppo pine), Pinus nigra Arnold (European black pine), Pinus pinaster Aiton (maritime pine), Pinus sylvestris L. (Scots pine), Populus nigra L. (European black poplar), Taxus baccata L. (English yew), and Quercus petraea (Matt.) Liebl. (sessile oak). Phenotypic (height, diameter at breast height, crown size, bark thickness, biomass, straightness, forking, branch angle, fructification), regeneration, environmental in situ measurements (soil depth, vegetation cover, competition indices), and environmental modeling data extracted by using bilinear interpolation accounting for surrounding conditions of each tree (precipitation, temperature, insolation, drought indices) were obtained from trees in 194 sites covering the species' geographic ranges and reflecting local environmental gradients. CONCLUSION: The GenTree Platform is a new resource for investigating ecological and evolutionary processes in forest trees. The coherent phenotyping and environmental characterization across 12 species in their European ranges allow for a wide range of analyses from forest ecologists, conservationists, and macro-ecologists. Also, the data here presented can be linked to the GenTree Dendroecological collection, the GenTree Leaf Trait collection, and the GenTree Genomic collection presented elsewhere, which together build the largest evolutionary forest ecology data collection available.


Assuntos
Fagus , Picea , Pinus sylvestris , Florestas , Árvores
13.
Mol Ecol ; 30(5): 1190-1205, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33452714

RESUMO

Unravelling the evolutionary processes underlying range expansions is fundamental to understand the distribution of organisms, as well as to predict their future responses to environmental change. Predictions for range expansions include a loss of genetic diversity and an accumulation of deleterious alleles along the expansion axis, which can decrease fitness at the range-front (expansion load). In plants, empirical studies supporting expansion load are scarce, and its effects remain to be tested outside a few model species. Leontodon longirostris is a colonizing Asteraceae with a widespread distribution in the Western Mediterranean, providing a particularly interesting system to gain insight into the factors that can enhance or mitigate expansion load. In this study, we produced a first genome draft for the species, covering 418 Mbp (~53% of the genome). Although incomplete, this draft was suitable to design a targeted sequencing of ~1.5 Mbp in 238 L. longirostris plants from 21 populations distributed along putative colonization routes in the Iberian Peninsula. Inferred demographic history supports a range expansion from southern Iberia around 40,000 years ago, reaching northern Iberia around 25,000 years ago. The expansion was accompanied by a loss of genetic diversity and a significant increase in the proportion of putatively deleterious mutations. However, levels of expansion load in L. longirostris were smaller than those found in other plant species, which can be explained, at least partially, by its high dispersal ability, the self-incompatible mating system, and the fact that the expansion occurred along a strong environmental cline.


Assuntos
Asteraceae , Variação Genética , Evolução Biológica , Demografia , Europa (Continente)
14.
Mol Ecol ; 29(24): 4797-4811, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33063352

RESUMO

Severe bottlenecks significantly diminish the amount of genetic diversity and the speed at which it accumulates (i.e., evolutionary rate). They further compromise the efficiency of natural selection to eliminate deleterious variants, which may reach fixation in the surviving populations. Consequently, expanding and adapting to new environments may pose a significant challenge when strong bottlenecks result in genetic pauperization. Herein, we surveyed the patterns of nucleotide diversity, molecular adaptation and genetic load across 177 gene-loci in a circum-Mediterranean conifer (Pinus pinea L.) that represents one of the most extreme cases of genetic pauperization in widespread outbreeding taxa. We found very little genetic variation in both hypervariable nuclear microsatellites (SSRs) and gene-loci, which translated into genetic diversity estimates one order of magnitude lower than those previously reported for pines. Such values were consistent with a strong population decline that began some ~1 Ma. Comparisons with the related and parapatric maritime pine (Pinus pinaster Ait.) revealed reduced rates of adaptive evolution (α and ωa ) and a significant accumulation of genetic load. It is unlikely that these are the result from differences in mutation rate or linkage disequilibrium between the two species; instead they are the presumable outcome of contrasting demographic histories affecting both the speed at which these taxa accumulate genetic diversity, and the global efficacy of selection. Future studies, and programs for conservation and management, should thus start testing for the effects of genetic load on fitness, and integrating such effects into predictive models.


Assuntos
Pinus , Árvores , Animais , Carga Genética , Variação Genética , Repetições de Microssatélites/genética , Pinus/genética
15.
Ann Bot ; 126(5): 865-872, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32463869

RESUMO

BACKGROUND AND AIMS: Highly controlled experiments document that plant genetic diversity and relatedness can shape herbivore communities and patterns of herbivory. Evidence from the field is, however, scarce and inconsistent. We assessed whether a genetic signal underlying herbivory can be detected in oak woodlands when accounting for variation at smaller (within-tree) and larger (among-stand) scales. METHODS: We tested relationships between tree genetic relatedness, leaf chemical defences and insect herbivory for different canopy layers in 240 trees from 15 pedunculate oak (Quercus robur) forest stands. We partitioned sources of variability in herbivory and defences among stands, individuals and branches. KEY RESULTS: Leaf defences, insect herbivory and their relationship differed systematically between the upper and the lower tree canopy. When accounting for this canopy effect, the variation explained by tree genetic relatedness rose from 2.8 to 34.1 % for herbivory and from 7.1 to 13.8 % for leaf defences. The effect was driven by markedly stronger relationships in the upper canopy. CONCLUSIONS: Our findings illustrate that considerable effects of the host plant genotype on levels of leaf chemical defences and associated insect herbivory can be detected in natural tree populations when within-individual variation is properly accounted for.


Assuntos
Herbivoria , Quercus , Animais , Insetos , Folhas de Planta , Quercus/genética , Árvores/genética
17.
Sci Data ; 7(1): 1, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31896794

RESUMO

The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.


Assuntos
Árvores/crescimento & desenvolvimento , Madeira , Betula , Mudança Climática , Europa (Continente) , Fagus , Florestas , Picea , Pinus , Populus , Quercus
18.
Evol Appl ; 13(1): 143-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892949

RESUMO

Detecting the molecular basis of local adaptation and identifying selective drivers is still challenging in nonmodel species. The use of purely population genetic approaches is limited by some characteristics of genetic systems, such as pleiotropy and polygenic control, and parallel evidence from phenotypic-based experimental comparisons is required. In long-lived organisms, the detection of selective pressures might also be precluded by evolutionary lag times in response to the environment. Here, we used the English yew to showcase an example of a multiscale integrative approach in a nonmodel species with limited plant and genomic resources. We combined information from two independent sources, phenotypes in a common environment and genomic data in natural populations, to investigate the signature of selection. Growth differences among populations in a common environment, and phenological patterns of both shoot elongation and male strobili maturation, were associated with climate clines, providing evidence for local adaptation and guiding us in the selection of populations for genomic analyses. We used information on over 25,000 SNPs from c. 1,200 genes to infer the demographic history and to test for molecular signatures of selection at different levels: SNP, gene, and biological pathway. Our results confirmed an overall demographic history of population decline, but we also found evidence for putative local adaptation at the molecular level. We identified or confirmed several candidate genes for positive and negative selection in forest trees, including the pseudo-response regulator 7 (PRR7), an essential component of the circadian clock in plants. In addition, we successfully tested an approach to detect polygenic adaptation in biological pathways, allowing us to identify the flavonoid biosynthesis pathway as a candidate stress-response pathway that deserves further attention in other plants. Finally, our study contributes to the emerging view that explaining contemporary standing genetic variation requires considering adaptation to past climates, especially for long-lived trees.

19.
Genes (Basel) ; 10(9)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487909

RESUMO

Finding outlier loci underlying local adaptation is challenging and is best approached by suitable sampling design and rigorous method selection. In this study, we aimed to detect outlier loci (single nucleotide polymorphisms, SNPs) at the local scale by using Aleppo pine (Pinus halepensis), a drought resistant conifer that has colonized many habitats in the Mediterranean Basin, as the model species. We used a nested sampling approach that considered replicated altitudinal gradients for three contrasting sites. We genotyped samples at 294 SNPs located in genomic regions selected to maximize outlier detection. We then applied three different statistical methodologies-Two Bayesian outlier methods and one latent factor principal component method-To identify outlier loci. No SNP was an outlier for all three methods, while eight SNPs were detected by at least two methods and 17 were detected only by one method. From the intersection of outlier SNPs, only one presented an allelic frequency pattern associated with the elevational gradient across the three sites. In a context of multiple populations under similar selective pressures, our results underline the need for careful examination of outliers detected in genomic scans before considering them as candidates for convergent adaptation.


Assuntos
Aclimatação , Evolução Molecular , Pinus/genética , Polimorfismo de Nucleotídeo Único , Altitude , Pinus/fisiologia , Seleção Genética
20.
G3 (Bethesda) ; 9(7): 2039-2049, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31217262

RESUMO

Silver fir (Abies alba Mill.) is a keystone conifer of European montane forest ecosystems that has experienced large fluctuations in population size during during the Quaternary and, more recently, due to land-use change. To forecast the species' future distribution and survival, it is important to investigate the genetic basis of adaptation to environmental change, notably to extreme events. For this purpose, we here provide a first draft genome assembly and annotation of the silver fir genome, established through a community-based initiative. DNA obtained from haploid megagametophyte and diploid needle tissue was used to construct and sequence Illumina paired-end and mate-pair libraries, respectively, to high depth. The assembled A. alba genome sequence accounted for over 37 million scaffolds corresponding to 18.16 Gb, with a scaffold N50 of 14,051 bp. Despite the fragmented nature of the assembly, a total of 50,757 full-length genes were functionally annotated in the nuclear genome. The chloroplast genome was also assembled into a single scaffold (120,908 bp) that shows a high collinearity with both the A. koreana and A. sibirica complete chloroplast genomes. This first genome assembly of silver fir is an important genomic resource that is now publicly available in support of a new generation of research. By genome-enabling this important conifer, this resource will open the gate for new research and more precise genetic monitoring of European silver fir forests.


Assuntos
Abies/genética , Genoma de Planta , Genômica , Biologia Computacional/métodos , Bases de Dados Genéticas , Tamanho do Genoma , Genoma de Cloroplastos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA