Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Polymers (Basel) ; 16(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732758

RESUMO

Biopolymers are biodegradable and renewable and can significantly reduce environmental impacts. For this reason, biocomposites based on a plasticized starch and cross-linker matrix and with a microfibrillated OCC cardboard cellulose reinforcement were developed. Biocomposites were prepared by suspension casting with varied amounts of microfibrillated cellulose: 0, 4, 8, and 12 wt%. Polyethylene glycol diglycidyl ether (PEGDE) was used as a cross-linking, water-soluble, and non-toxic agent. Microfibrillated cellulose (MFC) from OCC cardboard showed appropriate properties and potential for good performance as a reinforcement. In general, microfiber incorporation and matrix cross-linking increased crystallization, reduced water adsorption, and improved the physical and tensile properties of the plasticized starch. Biocomposites cross-linked with PEGDE and reinforced with 12 wt% MFC showed the best properties. The chemical and structural changes induced by the cross-linking of starch chains and MFC reinforcement were confirmed by FTIR, NMR, and XRD. Biodegradation higher than 80% was achieved for most biocomposites in 15 days of laboratory compost.

2.
Parasit Vectors ; 17(1): 97, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424626

RESUMO

BACKGROUND: Mosquito-borne diseases are a major concern for public and veterinary health authorities, highlighting the importance of effective vector surveillance and control programs. Traditional surveillance methods are labor-intensive and do not provide high temporal resolution, which may hinder a full assessment of the risk of mosquito-borne pathogen transmission. Emerging technologies for automated remote mosquito monitoring have the potential to address these limitations; however, few studies have tested the performance of such systems in the field. METHODS: In the present work, an optical sensor coupled to the entrance of a standard mosquito suction trap was used to record 14,067 mosquito flights of Aedes and Culex genera at four temperature regimes in the laboratory, and the resulting dataset was used to train a machine learning (ML) model. The trap, sensor, and ML model, which form the core of an automated mosquito surveillance system, were tested in the field for two classification purposes: to discriminate Aedes and Culex mosquitoes from other insects that enter the trap and to classify the target mosquitoes by genus and sex. The field performance of the system was assessed using balanced accuracy and regression metrics by comparing the classifications made by the system with those made by the manual inspection of the trap. RESULTS: The field system discriminated the target mosquitoes (Aedes and Culex genera) with a balanced accuracy of 95.5% and classified the genus and sex of those mosquitoes with a balanced accuracy of 88.8%. An analysis of the daily and seasonal temporal dynamics of Aedes and Culex mosquito populations was also performed using the time-stamped classifications from the system. CONCLUSIONS: This study reports results for automated mosquito genus and sex classification using an optical sensor coupled to a mosquito trap in the field with highly balanced accuracy. The compatibility of the sensor with commercial mosquito traps enables the sensor to be integrated into conventional mosquito surveillance methods to provide accurate automatic monitoring with high temporal resolution of Aedes and Culex mosquitoes, two of the most concerning genera in terms of arbovirus transmission.


Assuntos
Aedes , Arbovírus , Culex , Doenças Transmitidas por Mosquitos , Animais , Mosquitos Vetores
3.
Polymers (Basel) ; 15(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37765647

RESUMO

In this work, cellulose nanocrystals (CNCs), bleached cellulose nanofibers (bCNFs), and unbleached cellulose nanofibers (ubCNFs) isolated by acid hydrolysis from Agave tequilana Weber var. Azul bagasse, an agro-waste from the tequila industry, were used as reinforcements in a thermoplastic starch matrix to obtain environmentally friendly materials that can substitute contaminant polymers. A robust characterization of starting materials and biocomposites was carried out. Biocomposite mechanical, thermal, and antibacterial properties were evaluated, as well as color, crystallinity, morphology, rugosity, lateral texture, electrical conductivity, chemical identity, solubility, and water vapor permeability. Pulp fibers and nanocelluloses were analyzed via SEM, TEM, and AFM. The water vapor permeability (WVP) decreased by up to 20.69% with the presence of CNCs. The solubility decreases with the presence of CNFs and CNCs. The addition of CNCs and CNFs increased the tensile strength and Young's modulus and decreased the elongation at break. Biocomposites prepared with ubCNF showed the best tensile mechanical properties due to a better adhesion with the matrix. Images of bCNF-based biocomposites demonstrated that bCNFs are good reinforcing agents as the fibers were dispersed within the starch film and embedded within the matrix. Roughness increased with CNF content and decreased with CNC content. Films with CNCs did not show bacterial growth for Staphylococcus aureus and Escherichia coli. This study offers a new theoretical basis since it demonstrates that different proportions of bleached or unbleached nanofibers and nanocrystals can improve the properties of starch films.

4.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111331

RESUMO

Continuous evaluation of the coronavirus disease 2019 (COVID-19) vaccine effectiveness in hemodialysis (HD) patients is critical in this immunocompromised patient group with higher mortality rates due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The response towards vaccination in HD patients has been studied weeks after their first and second SARS-CoV-2 vaccination dose administration, but no further studies have been developed in a long-term manner, especially including both the humoral and cellular immune response. Longitudinal studies that monitor the immune response to COVID-19 vaccination in individuals undergoing HD are therefore necessary to prioritize vaccination strategies and minimize the pathogenic effects of SARS-CoV-2 in this high-risk group of patients. We followed up HD patients and healthy volunteers (HV) and monitored their humoral and cellular immune response three months after the second (V2+3M) and after the third vaccination dose (V3+3M), taking into consideration previous COVID-19 infections. Our cellular immunity results show that, while HD patients and HV individuals secrete comparable levels of IFN-γ and IL-2 in ex vivo stimulated whole blood at V2+3M in both naïve and COVID-19-recovered individuals, HD patients secrete higher levels of IFN-γ and IL-2 than HV at V3+3M. This is mainly due to a decay in the cellular immune response in HV individuals after the third dose. In contrast, our humoral immunity results show similar IgG binding antibody units (BAU) between HD patients and HV individuals at V3+3M, independently of their previous infection status. Overall, our results indicate that HD patients maintain strong cellular and humoral immune responses after repeated 1273-mRNA SARS-CoV-2 vaccinations over time. The data also highlights significant differences between cellular and humoral immunity after SARS-CoV-2 vaccination, which emphasizes the importance of monitoring both arms of the immune response in the immunocompromised population.

5.
Front Public Health ; 11: 1329245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249387

RESUMO

Background: Increasing physical activity (PA) levels and reducing sedentary behaviors in children and adolescents is a need, especially in schools. Active breaks and physically active learning are examples of two emerging methodologies that have been shown to be effective in increasing PA levels and additionally produce improvements in children's educational markers. However, the evidence in adolescents is very limited. This paper presents the design, measurements, and interventions implemented in the ACTIVE CLASS study, whose objectives are: (i) evaluate the effects of two interventions on PA levels, sedentary time, health-related physical fitness academic indicators, cognition, and markers of psychological health among secondary education students; (ii) evaluate teachers' and students' experiences about the implementation of these the two school-based PA intervention. Methods: A randomized controlled study is conducted with a total of 292 students aged 12-14 years old from six schools (7th and 8th grade) in Spain (three in Cadiz and three in Caceres). One school from each study provinces is randomly assigned to either the active break intervention group, the physically active learning intervention group, or the control group. The interventions have a duration of 16 weeks. Nine main measurement categories are assessed: PA and sedentary time, health-related physical fitness, academic indicators, cognition, psychological health, motivational variables, dietary patterns, sociodemographic characteristics, as well as qualitative information through semi-structured individual interviews and focus groups. Three independent measurements of evaluation are distinguished: pre-intervention, post-intervention (week 16) and retention measurement (4 weeks after the intervention). For quantitative variables, descriptive, correlational, regression and repeated measures ANOVA will be applied. Discussion: To the best of our knowledge, the ACTIVE CLASS study is the first of its kind in Spain to evaluate the effects of incorporating active breaks and physically active learning in secondary education. In addition, this project provides important information on the effects of two school-based PA intervention arms on educational variables and health markers in adolescents. This will provide valuable and innovative training to the educational community, enabling them to implement teaching methodologies that have the potential to enhance academic performance and improve the quality of life for their students. Clinical trial registration: clinicaltrials.gov, NCT05891054.


Assuntos
Qualidade de Vida , Instituições Acadêmicas , Adolescente , Criança , Humanos , Escolaridade , Estudantes , Exercício Físico
6.
Microbiol Spectr ; 10(5): e0250822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173332

RESUMO

HIV-1 sequence population structure among brain and nonbrain cellular compartments is incompletely understood. Here, we compared proviral pol and env high-quality consensus single-molecule real-time (SMRT) sequences derived from CD3+ T cells and CD14+ macrophage lineage cells from meningeal or peripheral (spleen, blood) tissues obtained at autopsy from two individuals with viral suppression on antiretroviral therapy (ART). Phylogenetic analyses showed strong evidence of population structure between CD3+ and CD14+ virus populations. Distinct env variable-region characteristics were also found between CD3+ and CD14+ viruses. Furthermore, shared macrophage-tropic amino acid residues (env) and drug resistance mutations (pol) between meningeal and peripheral virus populations were consistent with the meninges playing a role in viral gene flow across the blood-brain barrier. Overall, our results point toward potential functional differences among meningeal and peripheral CD3+ and CD14+ virus populations and a complex evolutionary history driven by distinct selection pressures and/or viral gene flow. IMPORTANCE Different cell types and/or tissues may serve as a reservoir for HIV-1 during ART-induced viral suppression. We compared proviral pol and env sequences from CD3+ T cells and CD14+ macrophage lineage cells from brain and nonbrain tissues from two virally suppressed individuals. We found strong evidence of viral population structure among cells/tissues, which may result from distinct selective pressures across cell types and anatomic sites.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Filogenia , Linfócitos T , Infecções por HIV/tratamento farmacológico , Macrófagos , Meninges , Aminoácidos
7.
EClinicalMedicine ; 50: 101529, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35795713

RESUMO

Background: The CombiVacS study was designed to assess immunogenicity and reactogenicity of the heterologous ChAdOx1-S/BNT162b2 combination, and 14-day results showed a strong immune response. The present secondary analysis addresses the evolution of humoral and cellular response up to day 180. Methods: Between April 24 and 30, 2021, 676 adults primed with ChAdOx1-S were enrolled in five hospitals in Spain, and randomised to receive BNT162b2 as second dose (interventional group [IG]) or no vaccine (control group [CG]). Individuals from CG received BNT162b2 as second dose and also on day 28, as planned based on favourable results on day 14. Humoral immunogenicity, measured by immunoassay for SARS-CoV-2 receptor binding domain (RBD), antibody functionality using pseudovirus neutralisation assays for the reference (G614), Alpha, Beta, Delta, and Omicron variants, as well as cellular immune response using interferon-γ and IL-2 immunoassays were assessed at day 28 after BNT162b2 in both groups, at day 90 (planned only in the interventional group) and at day 180 (laboratory data cut-off on Nov 19, 2021). This study was registered with EudraCT (2021-001978-37) and ClinicalTrials.gov (NCT04860739). Findings: In this secondary analysis, 664 individuals (441 from IG and 223 from CG) were included. At day 28 post vaccine, geometric mean titres (GMT) of RBD antibodies were 5616·91 BAU/mL (95% CI 5296·49-5956·71) in the IG and 7298·22 BAU/mL (6739·41-7903·37) in the CG (p < 0·0001). RBD antibodies titres decreased at day 180 (1142·0 BAU/mL [1048·69-1243·62] and 1836·4 BAU/mL [1621·62-2079·62] in the IG and CG, respectively; p < 0·0001). Neutralising antibodies also waned from day 28 to day 180 in both the IG (1429·01 [1220·37-1673·33] and 198·72 [161·54-244·47], respectively) and the CG (1503·28 [1210·71-1866·54] and 295·57 [209·84-416·33], respectively). The lowest variant-specific response was observed against Omicron-and Beta variants, with low proportion of individuals exhibiting specific neutralising antibody titres (NT50) >1:100 at day 180 (19% and 22%, respectively). Interpretation: Titres of RBD antibodies decay over time, similar to homologous regimes. Our findings suggested that delaying administration of the second dose did not have a detrimental effect after vaccination and may have improved the response obtained. Lower neutralisation was observed against Omicron and Beta variants at day 180. Funding: Funded by Instituto de Salud Carlos III (ISCIII).

8.
Nat Biotechnol ; 40(11): 1680-1689, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35697804

RESUMO

Fast, high-throughput methods for measuring the level and duration of protective immune responses to SARS-CoV-2 are needed to anticipate the risk of breakthrough infections. Here we report the development of two quantitative PCR assays for SARS-CoV-2-specific T cell activation. The assays are rapid, internally normalized and probe-based: qTACT requires RNA extraction and dqTACT avoids sample preparation steps. Both assays rely on the quantification of CXCL10 messenger RNA, a chemokine whose expression is strongly correlated with activation of antigen-specific T cells. On restimulation of whole-blood cells with SARS-CoV-2 viral antigens, viral-specific T cells secrete IFN-γ, which stimulates monocytes to produce CXCL10. CXCL10 mRNA can thus serve as a proxy to quantify cellular immunity. Our assays may allow large-scale monitoring of the magnitude and duration of functional T cell immunity to SARS-CoV-2, thus helping to prioritize revaccination strategies in vulnerable populations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Imunidade Celular , Reação em Cadeia da Polimerase , Linfócitos T
9.
Parasit Vectors ; 15(1): 190, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668486

RESUMO

BACKGROUND: Every year, more than 700,000 people die from vector-borne diseases, mainly transmitted by mosquitoes. Vector surveillance plays a major role in the control of these diseases and requires accurate and rapid taxonomical identification. New approaches to mosquito surveillance include the use of acoustic and optical sensors in combination with machine learning techniques to provide an automatic classification of mosquitoes based on their flight characteristics, including wingbeat frequency. The development and application of these methods could enable the remote monitoring of mosquito populations in the field, which could lead to significant improvements in vector surveillance. METHODS: A novel optical sensor prototype coupled to a commercial mosquito trap was tested in laboratory conditions for the automatic classification of mosquitoes by genus and sex. Recordings of > 4300 laboratory-reared mosquitoes of Aedes and Culex genera were made using the sensor. The chosen genera include mosquito species that have a major impact on public health in many parts of the world. Five features were extracted from each recording to form balanced datasets and used for the training and evaluation of five different machine learning algorithms to achieve the best model for mosquito classification. RESULTS: The best accuracy results achieved using machine learning were: 94.2% for genus classification, 99.4% for sex classification of Aedes, and 100% for sex classification of Culex. The best algorithms and features were deep neural network with spectrogram for genus classification and gradient boosting with Mel Frequency Cepstrum Coefficients among others for sex classification of either genus. CONCLUSIONS: To our knowledge, this is the first time that a sensor coupled to a standard mosquito suction trap has provided automatic classification of mosquito genus and sex with high accuracy using a large number of unique samples with class balance. This system represents an improvement of the state of the art in mosquito surveillance and encourages future use of the sensor for remote, real-time characterization of mosquito populations.


Assuntos
Aedes , Culex , Animais , Vetores de Doenças , Humanos , Aprendizado de Máquina , Mosquitos Vetores
10.
Front Immunol ; 13: 845882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401504

RESUMO

Long-term hemodialysis (HD) patients are considered vulnerable and at high-risk of developing severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection due to their immunocompromised condition. Since COVID-19 associated mortality rates are higher in HD patients, vaccination is critical to protect them. The response towards vaccination against COVID-19 in HD patients is still uncertain and, in particular the cellular immune response is not fully understood. We monitored the humoral and cellular immune responses by analysis of the serological responses and Spike-specific cellular immunity in COVID-19-recovered and naïve HD patients in a longitudinal study shortly after vaccination to determine the protective effects of 1273-mRNA vaccination against SARS-CoV-2 in these high-risk patients. In naïve HD patients, the cellular immune response measured by IL-2 and IFN-É£ secretion needed a second vaccine dose to significantly increase, with a similar pattern for the humoral response. In contrast, COVID-19 recovered HD patients developed a potent and rapid cellular and humoral immune response after the first vaccine dose. Interestingly, when comparing COVID-19 recovered healthy volunteers (HV), previously vaccinated with BNT162b2 vaccine to HD patients vaccinated with 1273-mRNA, these exhibited a more robust immune response that is maintained longitudinally. Our results indicate that HD patients develop strong cellular and humoral immune responses to 1273-mRNA vaccination and argue in favor of personalized immune monitoring studies in HD patients, especially if COVID-19 pre-exposed, to adapt COVID-19 vaccination protocols for this immunocompromised population.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , Estudos Longitudinais , RNA Mensageiro/genética , Diálise Renal , SARS-CoV-2 , Vacinação/métodos
11.
J Virol ; 95(23): e0120221, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495695

RESUMO

Understanding tissue-based HIV-1 proviral population structure is important for improving treatment strategies for individuals with HIV-associated neurological disorders (HAND). Previous analyses have revealed HIV-1 envelope (env) population structure between brain and peripheral tissues as well as Env functional differences, especially in individuals with HAND. Furthermore, population structure has been detected among different anatomical locations in the brain itself, although such patterns are inconsistent across individuals and less strongly associated with the presence/absence of HAND. Here, we utilized the Pacific Biosciences single-molecule real-time (SMRT) high-throughput technology to generate thousands of sequences for each tissue, along with phylogenetic and distance-based analyses, to investigate env sequences from paired brain and spleen samples from eight individuals with/without HAND. To account for the high error rate associated with SMRT sequencing, we used a clustering approach to identify high-quality consensus sequences representative of ≥10 reads ("HQCS10"). In parallel, we characterized variable regions from nonclustered sequences to identify potential functional differences. We found evidence for significant population structure between brain and spleen tissues, as well as among brain tissues and within the same brain tissue, in individuals both with and without HAND. Variable region analysis showed differences in length and charge among brain and nonbrain tissues as well as within the brain, suggesting possible functional differences. Our results demonstrate the complexity of HIV-1 env structure/gene flow among tissues and support the concept that selective pressures in different tissue microenvironments drive viral evolution and adaptation. IMPORTANCE Understanding the evolution of HIV-1 in the brain compared to other tissues is important for improving treatment strategies for individuals with HIV-associated neurological disorders (HAND). We utilized high-throughput sequencing technology to generate thousands of full-length env sequences from paired brain and spleen samples from eight individuals with/without HAND. We found significant viral population structure for participants both with and without HAND, providing robust evidence for the brain as a compartmentalized tissue and potentially a viral reservoir. We also found striking genetic differences between virus populations, even from the same tissue, suggesting the potential for functional differences and the possibility for multiple evolutionary pathways that result in similar tropisms and/or other tissue-adapted characteristics. Our results demonstrate the complexity of viral population structure within the brain and suggest that analysis of peripheral blood samples alone may not be fully informative with respect to improving strategies to treat or eradicate HIV-1.


Assuntos
Encéfalo/virologia , HIV-1/genética , Provírus/genética , Baço/virologia , Genes env , Variação Genética , Infecções por HIV/virologia , HIV-1/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Provírus/classificação , Análise de Sequência de DNA
12.
Cell Rep ; 36(8): 109570, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34390647

RESUMO

The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. In this study, we characterize SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during and after two doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naive individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.


Assuntos
COVID-19/prevenção & controle , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Anticorpos Antivirais/sangue , Ligante de CD40/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/sangue , Interferon gama/metabolismo , Interleucina-2/metabolismo , Peptídeos/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Vacinação , Vacinas Sintéticas/imunologia , Vacinas de mRNA
13.
Lancet ; 398(10295): 121-130, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181880

RESUMO

BACKGROUND: To date, no immunological data on COVID-19 heterologous vaccination schedules in humans have been reported. We assessed the immunogenicity and reactogenicity of BNT162b2 (Comirnaty, BioNTech, Mainz, Germany) administered as second dose in participants primed with ChAdOx1-S (Vaxzevria, AstraZeneca, Oxford, UK). METHODS: We did a phase 2, open-label, randomised, controlled trial on adults aged 18-60 years, vaccinated with a single dose of ChAdOx1-S 8-12 weeks before screening, and no history of SARS-CoV-2 infection. Participants were randomly assigned (2:1) to receive either BNT162b2 (0·3 mL) via a single intramuscular injection (intervention group) or continue observation (control group). The primary outcome was 14-day immunogenicity, measured by immunoassays for SARS-CoV-2 trimeric spike protein and receptor binding domain (RBD). Antibody functionality was assessed using a pseudovirus neutralisation assay, and cellular immune response using an interferon-γ immunoassay. The safety outcome was 7-day reactogenicity, measured as solicited local and systemic adverse events. The primary analysis included all participants who received at least one dose of BNT162b2 and who had at least one efficacy evaluation after baseline. The safety analysis included all participants who received BNT162b2. This study is registered with EudraCT (2021-001978-37) and ClinicalTrials.gov (NCT04860739), and is ongoing. FINDINGS: Between April 24 and 30, 2021, 676 individuals were enrolled and randomly assigned to either the intervention group (n=450) or control group (n=226) at five university hospitals in Spain (mean age 44 years [SD 9]; 382 [57%] women and 294 [43%] men). 663 (98%) participants (n=441 intervention, n=222 control) completed the study up to day 14. In the intervention group, geometric mean titres of RBD antibodies increased from 71·46 BAU/mL (95% CI 59·84-85·33) at baseline to 7756·68 BAU/mL (7371·53-8161·96) at day 14 (p<0·0001). IgG against trimeric spike protein increased from 98·40 BAU/mL (95% CI 85·69-112·99) to 3684·87 BAU/mL (3429·87-3958·83). The interventional:control ratio was 77·69 (95% CI 59·57-101·32) for RBD protein and 36·41 (29·31-45·23) for trimeric spike protein IgG. Reactions were mild (n=1210 [68%]) or moderate (n=530 [30%]), with injection site pain (n=395 [88%]), induration (n=159 [35%]), headache (n=199 [44%]), and myalgia (n=194 [43%]) the most commonly reported adverse events. No serious adverse events were reported. INTERPRETATION: BNT162b2 given as a second dose in individuals prime vaccinated with ChAdOx1-S induced a robust immune response, with an acceptable and manageable reactogenicity profile. FUNDING: Instituto de Salud Carlos III. TRANSLATIONS: For the French and Spanish translations of the abstract see Supplementary Materials section.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Imunização Secundária , Imunogenicidade da Vacina/imunologia , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Adolescente , Adulto , Vacina BNT162 , COVID-19/epidemiologia , ChAdOx1 nCoV-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espanha/epidemiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
14.
Front Immunol ; 12: 632478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763077

RESUMO

Despite of the rapid development of the vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it will take several months to have enough doses and the proper infrastructure to vaccinate a good proportion of the world population. In this interim, the accessibility to the Bacille Calmette-Guerin (BCG) may mitigate the pandemic impact in some countries and the BCG vaccine offers significant advantages and flexibility in the way clinical vaccines are administered. BCG vaccination is a highly cost-effective intervention against tuberculosis (TB) and many low-and lower-middle-income countries would likely have the infrastructure, and health care personnel sufficiently familiar with the conventional TB vaccine to mount full-scale efforts to administer novel BCG-based vaccine for COVID-19. This suggests the potential for BCG to overcome future barriers to vaccine roll-out in the countries where health systems are fragile and where the effects of this new coronavirus could be catastrophic. Many studies have reported cross-protective effects of the BCG vaccine toward non-tuberculosis related diseases. Mechanistically, this cross-protective effect of the BCG vaccine can be explained, in part, by trained immunity, a recently discovered program of innate immune memory, which is characterized by non-permanent epigenetic reprogramming of macrophages that leads to increased inflammatory cytokine production and consequently potent immune responses. In this review, we summarize recent work highlighting the potential use of BCG for the treatment respiratory infectious diseases and ongoing SARS-CoV-2 clinical trials. In situations where no other specific prophylactic tools are available, the BCG vaccine could be used as a potential adjuvant, to decrease sickness of SARS-CoV-2 infection and/or to mitigate the effects of concurrent respiratory infections.


Assuntos
Vacina BCG/administração & dosagem , COVID-19/imunologia , Animais , Vacina BCG/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Humanos , Imunidade Inata , Pandemias , SARS-CoV-2/fisiologia
15.
López-Arroyo, José L.; Pérez-Zúñiga, Juan M.; Merino-Pasaye, Laura E.; Saavedra-González, Azucena; Alcivar-Cedeño, Luisa María; Álvarez-Vera, José Luis; Anaya-Cuellar, Irene; Arana-Luna, Luara L.; Ávila-Castro, David; Bates-Martín, Ramón A.; Cesarman-Maus, Gabriela; Chávez-Aguilar, Lénica A.; Peña-Celaya, José A. de la; Espitia-Ríos, María E.; Estrada-Domínguez, Patricia; Fermín-Caminero, Denisse; Flores-Patricio, Willy; García Chávez, Jaime; García-Lee, María T.; González-Pérez, María del Carmen; González-Rubio, María del Carmen; González-Villareal, María Guadalupe; Ramírez-Moreno, Fabiola; Hernández-Colin, Ana K.; Hernández-Ruiz, Eleazar; Herrera-Olivares, Wilfrido; Leyto-Cruz, Faustino; Loera-Fragoso, Sergio; Martínez-Ríos, Annel; Miranda-Madrazo, María R.; Morales-Hernández, Alba; Nava-Villegas, Lorena; Orellana-Garibay, Juan J.; Palma-Moreno, Orlando G.; Paredes-Lozano, Eugenia P.; Peña-Alcántara, Paula; Pérez-Lozano, Uendy; Pichardo-Cepín, Yayra M.; Reynoso-Pérez, Ana Carolina; Rodríguez-Serna, Mishel; Rojas-Castillejos, Flavio; Romero-Rodelo, Hilda; Ruíz-Contreras, Josué I.; Segura-García, Adela; Silva-Vera, Karina; Soto-Cisneros, Paulina M.; Tapia-Enríquez, Ana L.; Tavera-Rodríguez, Martha G.; Teomitzi-Sánchez, Óscar; Tepepa-Flores, Fredy; Valencia-Rivas, María D.; Valle-Cárdenas, Teresa; Varela-Constantino, Ana; Javier-Morales, Adrián; Martínez-Ramírez, Mario A.; Tena-Cano, Sergio; Terrazas-Marín, Ricardo; Vilchis-González, Shendel P.; Villela-Peña, Atenas; Mena-Zepeda, Verónica; Alvarado Ibarra, Martha.
Gac. méd. Méx ; 157(supl.1): S1-S37, feb. 2021. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1375490

RESUMO

resumen está disponible en el texto completo


Abstract Hemophilia is a hemorrhagic disorder with a sex-linked inherited pattern, characterized by an inability to amplify coagulation due to a deficiency in coagulation factor VIII (hemophilia A or classic) or factor IX (hemophilia B). Sequencing of the genes involved in hemophilia has provided a description and record of the main mutations, as well as a correlation with the various degrees of severity. Hemorrhagic manifestations are related to levels of circulating factor, mainly affecting the musculoskeletal system and specifically the large joints (knees, ankles and elbows). This document is a review and consensus of the main genetic aspects of hemophilia, from the inheritance pattern to the concept of women carriers, physiopathology and classification of the disorder, the basic and confirmation studies when hemophilia is suspected, the various treatment regimens based on infusion of the deficient coagulation factor as well as innovative factor-free therapies and recommendations for the management of complications associated with treatment (development of inhibitors and/or transfusion transmitted infections) or secondary to articular hemorrhagic events (hemophilic arthropathy). Finally, relevant reviews of clinical and treatment aspects of hemorrhagic pathology charachterized by acquired deficiency of FVIII secondary to neutralized antibodies named acquired hemophilia.

16.
AIDS Res Hum Retroviruses ; 35(6): 588-596, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30793919

RESUMO

The HIV envelope protein contains five hypervariable domains (V1-V5) that are fundamental for cell entry. We contrasted modifications in the variable domains derived from a panel of 24 tissues from 7 subjects with no measurable plasma viral load (NPVL) to variable domains from 76 tissues from 15 subjects who had a detectable plasma viral load (PVL) at death. NPVL subject's V1 and V2 domains were usually highly length variable, whereas length variation in PVL sequences was more conserved. Longer V1s contained more charged residues, whereas longer V2s were more glycosylated. Structural analysis demonstrated V1/V2 charge, and N-site additions/subtractions were localized to the CD4 binding pocket. Diversified envelopes in tissues during therapy may represent a mechanism for HIV persistence in tissues, as binding pocket complexity is associated with HIV that may escape neutralization, whereas shorter envelopes are associated with increased infectivity. Further analysis of tissue-derived envelope sequences may enable better understanding of potential immunological approaches targeting the persistent HIV reservoir.


Assuntos
Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/virologia , Carga Viral/estatística & dados numéricos , Fármacos Anti-HIV/uso terapêutico , Autopsia , Reservatórios de Doenças/virologia , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Fragmentos de Peptídeos/genética , Análise de Sequência de DNA
17.
J Inorg Biochem ; 194: 26-33, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30807891

RESUMO

A comprehensive study of the protonation equilibria of a series of polyamine ligands along with their complex formation equilibria with Cu2+ and Zn2+ is reported in this work. The primary aim of this study has been the achievement of homogeneous thermodynamic data on these ligands, in order to evaluate their influence on the homeostatic equilibria of essential metal ions (Cu2+ and Zn2+) in biological fluids. These polyamines are largely used as linkers in the building of chelating agents for iron overload. Potentiometric and spectrophotometric techniques were used for the characterization of protonation and complex formation constants. In addition, the characterization of the formed complexes is discussed together with selected solid-state crystal structures, remarking the influence of the length of the chain and of the linear or tetradentate tripod nature of the polyamine ligands on the stability of the complexes.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Cobre/química , Poliaminas/química , Zinco/química , Ligantes , Prótons , Termodinâmica
18.
Biochem Cell Biol ; 97(4): 431-436, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30605356

RESUMO

Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to ethanol and has been linked to neurodevelopmental impairments. Alcohol has the potential to alter some of the epigenetic components that play a critical role during development. Previous studies have provided evidence that prenatal exposure to ethanol results in abnormal epigenetic patterns (i.e., hypomethylation) of the genome. The aim of this study was to determine how prenatal exposure to ethanol in rats affects the hippocampal levels of expression of two important brain epigenetic transcriptional regulators involved in synaptic plasticity and memory consolidation: methyl CpG-binding protein 2 (MeCP2) and histone variant H2A.Z. Unexpectedly, under the conditions used in this work we were not able to detect any changes in MeCP2. Interestingly, however, we observed a significant decrease in H2A.Z, accompanied by its chromatin redistribution in both female and male FASD rat pups. Moreover, the data from reverse-transcription qPCR later confirmed that this decrease in H2A.Z is mainly due to down-regulation of its H2A.Z-2 isoform gene expression. Altogether, these data provide strong evidence that prenatal exposure to ethanol alters histone variant H2A.Z during neurogenesis of rat hippocampus.


Assuntos
Transtornos do Espectro Alcoólico Fetal/metabolismo , Hipocampo/metabolismo , Histonas/genética , Histonas/metabolismo , Animais , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Perfilação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Arch Virol ; 164(2): 473-482, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30415390

RESUMO

Macrophage (mac)-tropic human immnunodeficiency virus type 1 (HIV-1) and simian immnunodeficiency virus (SIV) in brain are associated with neurological disease. Mac-tropic HIV-1 evolves enhanced CD4 interactions that enable macrophage infection via CD4, which is in low abundance. In contrast, mac-tropic SIV is associated with CD4-independent infection via direct CCR5 binding. Recently, mac-tropic simian-human immunodeficiency virus (SHIV) from macaque brain was also reported to infect cells via CCR5 without CD4. Since SHIV envelope proteins (Envs) are derived from HIV-1, we tested more than 100 HIV-1 clade B Envs for infection of CD4-negative, CCR5+ Cf2Th/CCR5 cells. However, no infection was detected. Our data suggest that there are differences in the evolution of mac-tropism in SIV and SHIV compared to HIV-1 clade B due to enhanced interactions with CCR5 and CD4, respectively.


Assuntos
Encéfalo/virologia , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/complicações , HIV-1/metabolismo , Doenças do Sistema Nervoso/etiologia , Encéfalo/metabolismo , Antígenos CD4/genética , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/virologia , Filogenia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
20.
Immunity ; 49(5): 819-828.e6, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30413362

RESUMO

Inducing graft acceptance without chronic immunosuppression remains an elusive goal in organ transplantation. Using an experimental transplantation mouse model, we demonstrate that local macrophage activation through dectin-1 and toll-like receptor 4 (TLR4) drives trained immunity-associated cytokine production during allograft rejection. We conducted nanoimmunotherapeutic studies and found that a short-term mTOR-specific high-density lipoprotein (HDL) nanobiologic treatment (mTORi-HDL) averted macrophage aerobic glycolysis and the epigenetic modifications underlying inflammatory cytokine production. The resulting regulatory macrophages prevented alloreactive CD8+ T cell-mediated immunity and promoted tolerogenic CD4+ regulatory T (Treg) cell expansion. To enhance therapeutic efficacy, we complemented the mTORi-HDL treatment with a CD40-TRAF6-specific nanobiologic (TRAF6i-HDL) that inhibits co-stimulation. This synergistic nanoimmunotherapy resulted in indefinite allograft survival. Together, we show that HDL-based nanoimmunotherapy can be employed to control macrophage function in vivo. Our strategy, focused on preventing inflammatory innate immune responses, provides a framework for developing targeted therapies that promote immunological tolerance.


Assuntos
Sobrevivência de Enxerto/imunologia , Terapia de Imunossupressão , Inflamação/imunologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Transplante de Órgãos , Aloenxertos , Animais , Biomarcadores , Proteína HMGB1/genética , Tolerância Imunológica , Imunidade Inata , Memória Imunológica , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Vimentina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA