Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 207: 144-160, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37463636

RESUMO

Cytochrome b5 reductase 3 (CYB5R3) activates respiratory metabolism in cellular systems and exerts a prolongevity action in transgenic mice overexpressing this enzyme, mimicking some of the beneficial effects of calorie restriction. The aim of our study was to investigate the role of sex on metabolic adaptations elicited by CYB5R3 overexpression, and how key markers related with mitochondrial function are modulated in skeletal muscle, one of the major contributors to resting energy expenditure. Young CYB5R3 transgenic mice did not exhibit the striking adaptations in carbon metabolism previously detected in older animals. CYB5R3 was efficiently overexpressed and targeted to mitochondria in skeletal muscle from transgenic mice regardless sex. Overexpression significantly elevated NADH in both sexes, although differences were not statistically significant for NAD+, and increased the abundance of cytochrome c and the fission protein DRP-1 in females but not in males. Moreover, while mitochondrial biogenesis and function markers (as TFAM, NRF-1 and cleaved SIRT3) were markedly upregulated by CYB5R3 overexpression in females, a downregulation was observed in males. Ultrastructural changes were also highlighted, with an increase in the number of mitochondria per surface unit, and in the size of intermyofibrillar mitochondria in transgenic females compared with their wild-type controls. Our results support that CYB5R3 overexpression upregulates markers consistent with enhanced mitochondrial biogenesis and function, and increases mitochondrial abundance in skeletal muscle, producing most of these potentially beneficial actions in females.


Assuntos
Citocromo-B(5) Redutase , Mitocôndrias , Animais , Feminino , Masculino , Camundongos , Proteínas de Transporte/metabolismo , Citocromo-B(5) Redutase/química , Citocromo-B(5) Redutase/metabolismo , Metabolismo Energético/genética , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fatores Sexuais
3.
Cell Stem Cell ; 29(9): 1298-1314.e10, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998641

RESUMO

Skeletal muscle regeneration depends on the correct expansion of resident quiescent stem cells (satellite cells), a process that becomes less efficient with aging. Here, we show that mitochondrial dynamics are essential for the successful regenerative capacity of satellite cells. The loss of mitochondrial fission in satellite cells-due to aging or genetic impairment-deregulates the mitochondrial electron transport chain (ETC), leading to inefficient oxidative phosphorylation (OXPHOS) metabolism and mitophagy and increased oxidative stress. This state results in muscle regenerative failure, which is caused by the reduced proliferation and functional loss of satellite cells. Regenerative functions can be restored in fission-impaired or aged satellite cells by the re-establishment of mitochondrial dynamics (by activating fission or preventing fusion), OXPHOS, or mitophagy. Thus, mitochondrial shape and physical networking controls stem cell regenerative functions by regulating metabolism and proteostasis. As mitochondrial fission occurs less frequently in the satellite cells in older humans, our findings have implications for regeneration therapies in sarcopenia.


Assuntos
Dinâmica Mitocondrial , Mitofagia , Idoso , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Células-Tronco/metabolismo
4.
Geroscience ; 44(4): 2223-2241, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35527283

RESUMO

Cytochrome b5 reductase 3 (CYB5R3) overexpression activates respiratory metabolism and exerts prolongevity effects in transgenic mice, mimicking some of the salutary effects of calorie restriction. The aim of our study was to understand how CYB5R3 overexpression targets key pathways that modulate the rate of aging in skeletal muscle, a postmitotic tissue with a greater contribution to resting energy expenditure. Mitochondrial function, autophagy and mitophagy markers were evaluated in mouse hind limb skeletal muscles from young-adult (7 months old) and old (24 months old) males of wild-type and CYB5R3-overexpressing genotypes. Ultrastructure of subsarcolemmal and intermyofibrillar mitochondria was studied by electron microscopy in red gastrocnemius. CYB5R3, which was efficiently overexpressed and targeted to skeletal muscle mitochondria regardless of age, increased the abundance of complexes I, II, and IV in old mice and prevented the age-related decrease of complexes I, III, IV, and V and the mitofusin MFN-2. ATP was significantly decreased by aging, which was prevented by CYB5R3 overexpression. Coenzyme Q and the mitochondrial biogenesis markers TFAM and NRF-1 were also significantly diminished by aging, but CYB5R3 overexpression did not protect against these declines. Both aging and CYB5R3 overexpression upregulated SIRT3 and the mitochondrial fission markers FIS1 and DRP-1, although with different outcomes on mitochondrial ultrastructure: old wild-type mice exhibited mitochondrial fragmentation whereas CYB5R3 overexpression increased mitochondrial size in old transgenic mice concomitant with an improvement of autophagic recycling. Interventions aimed at stimulating CYB5R3 could represent a valuable strategy to counteract the deleterious effects of aging in skeletal muscle.


Assuntos
Mitocôndrias Musculares , Mitocôndrias , Masculino , Camundongos , Animais , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Autofagia
5.
Biosensors (Basel) ; 11(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34940281

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is routinely used to detect biomolecules related to several diseases facilitating diagnosis and monitoring of these, as well as the possibility of decreasing their mortality rate. Several methods have been carried out to improve the ELISA sensitivity through antibodies immobilization on the microtiter plates. Here, we have developed a strategy of antibodies immobilization to improve the ELISA sensitivity increasing the antibody density surface through the tetrazine (Tz)-trans-cyclooctene (TCO) reaction. For this, we prepared surfaces with tetrazine groups while the captured antibody was conjugated with TCO. The tetrazine surfaces were prepared in two different ways: (1) from aminated plates and (2) from Tz-BSA-coated plates. The surfaces were evaluated using two sandwich ELISA models, one of them using the low-affinity antibody anti-c-myc as a capture antibody to detect the c-myc-GST-IL8h recombinant protein, and the other one to detect the carcinoembryonic human protein (CEA). The sensitivity increased in both surfaces treated with tetrazine in comparison with the standard unmodified surface. The c-myc-GST-IL8h detection was around 10-fold more sensible on both tetrazine surfaces, while CEA ELISA detection increased 12-fold on surfaces coated with Tz-BSA. In conclusion, we show that it is possible to improve the ELISA sensitivity using this immobilization system, where capture antibodies bond covalently to surfaces.


Assuntos
Anticorpos , Antígeno Carcinoembrionário , Anticorpos/imunologia , Antígeno Carcinoembrionário/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos
6.
Pathogens ; 10(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34959485

RESUMO

Bacterial extracellular vesicles are membranous ultrastructures released from the cell surface. They play important roles in the interaction between the host and the bacteria. In this work, we show how extracellular vesicles produced by four different serotypes of the important human pathogen, Streptococcus pneumoniae, are internalized by murine J774A.1 macrophages via fusion with the membrane of the host cells. We also evaluated the capacity of pneumococcal extracellular vesicles to elicit an immune response by macrophages. Macrophages treated with the vesicles underwent a serotype-dependent transient loss of viability, which was further reverted. The vesicles induced the production of proinflammatory cytokines, which was higher for serotype 1 and serotype 8-derived vesicles. These results demonstrate the biological activity of extracellular vesicles of clinically important pneumococcal serotypes.

7.
Pathogens ; 10(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34578131

RESUMO

Infections caused by the Gram-positive bacterium Streptococcus pneumoniae have become a major health problem worldwide because of their high morbidity and mortality rates, especially in developing countries. This microorganism colonizes the human upper respiratory tract and becomes pathogenic under certain circumstances, which are not well known. In the interaction with the host, bacterial surface structures and proteins play major roles. To gain knowledge into gradual changes and adaptive mechanisms that this pathogen undergoes from when it enters the host, we mimicked several in vivo situations representing interaction with epithelial and macrophage cells, as well as a condition of presence in blood. Then, we analyzed, in four pneumococcal strains, two major surface structures, the capsule and extracellular vesicles produced by the pneumococci, as well as surface proteins by proteomics, using the "shaving" approach, followed by LC-MS/MS. We found important differences in both surface ultrastructures and proteins among the culture conditions and strains used. Thus, this work provides insights into physiological adaptations of the pneumococcus when it interacts with the host, which may be useful for the design of strategies to combat infections caused by this pathogen.

8.
Nutrients ; 13(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34444693

RESUMO

Alterations in markers of mitochondrial content with ketogenic diets (KD) have been reported in tissues of rodents, but morphological quantification of mitochondrial mass using transmission electron microscopy (TEM), the gold standard for mitochondrial quantification, is needed to further validate these findings and look at specific regions of interest within a tissue. In this study, red gastrocnemius muscle, the prefrontal cortex, the hippocampus, and the liver left lobe were used to investigate the impact of a 1-month KD on mitochondrial content in healthy middle-aged mice. The results showed that in red gastrocnemius muscle, the fractional area of both subsarcolemmal (SSM) and intermyofibrillar (IMM) mitochondria was increased, and this was driven by an increase in the number of mitochondria. Mitochondrial fractional area or number was not altered in the liver, prefrontal cortex, or hippocampus following 1 month of a KD. These results demonstrate tissue-specific changes in mitochondrial mass with a short-term KD and highlight the need to study different muscle groups or tissue regions with TEM to thoroughly determine the effects of a KD on mitochondrial mass.


Assuntos
Encéfalo/metabolismo , Dieta Cetogênica/métodos , Fígado/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Animais , Camundongos , Modelos Animais
9.
Aging (Albany NY) ; 13(6): 7914-7930, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33735837

RESUMO

Declines in mitochondrial mass are thought to be a hallmark of mammalian aging, and a ketogenic diet (KD) may prevent the age-related decreases in mitochondrial content. The objective of this study was to investigate the impact of a KD on markers of mitochondrial mass. Mice were fed an isocaloric control diet (CD) or KD from 12 months of age. Tissues were collected after 1 month and 14 months of intervention, and a panel of commonly used markers of mitochondrial mass (mitochondrial enzyme activities and levels, mitochondrial to nuclear DNA ratio, and cardiolipin content) were measured. Our results showed that a KD stimulated activities of marker mitochondrial enzymes including citrate synthase, Complex I, and Complex IV in hindlimb muscle in aged mice. KD also increased the activity of citrate synthase and prevented an age-related decrease in Complex IV activity in aged brain. No other markers were increased in these tissues. Furthermore, the impacts of a KD on liver and kidney were mixed with no pattern indicative of a change in mitochondrial mass. In conclusion, results of the present study suggest that a KD induces tissue-specific changes in mitochondrial enzyme activities, or structure, rather than global changes in mitochondrial mass across tissues.


Assuntos
Dieta Cetogênica , Rim/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Animais , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Masculino , Camundongos
10.
NPJ Aging Mech Dis ; 7(1): 1, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33398019

RESUMO

The intrinsic aerobic capacity of an organism is thought to play a role in aging and longevity. Maximal respiratory rate capacity, a metabolic performance measure, is one of the best predictors of cardiovascular- and all-cause mortality. Rats selectively bred for high-(HCR) vs. low-(LCR) intrinsic running-endurance capacity have up to 31% longer lifespan. We found that positive changes in indices of mitochondrial health in cardiomyocytes (respiratory reserve, maximal respiratory capacity, resistance to mitochondrial permeability transition, autophagy/mitophagy, and higher lipids-over-glucose utilization) are uniformly associated with the extended longevity in HCR vs. LCR female rats. Cross-sectional heart metabolomics revealed pathways from lipid metabolism in the heart, which were significantly enriched by a select group of strain-dependent metabolites, consistent with enhanced lipids utilization by HCR cardiomyocytes. Heart-liver-serum metabolomics further revealed shunting of lipidic substrates between the liver and heart via serum during aging. Thus, mitochondrial health in cardiomyocytes is associated with extended longevity in rats with higher intrinsic exercise capacity and, probably, these findings can be translated to other populations as predictors of outcomes of health and survival.

11.
BMC Biotechnol ; 20(1): 41, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814567

RESUMO

BACKGROUND: The enzyme-linked immunosorbent assay (ELISA), is the most widely used and reliable clinical routine method for the detection of important protein markers in healthcare. Improving ELISAs is crucial for detecting biomolecules relates to health disorders and facilitating diagnosis at the early diseases stages. Several methods have been developed to improve the ELISA sensitivity through immobilization of antibodies on the microtiter plates. We have developed a highly sensitive ELISA strategy based on the preparation of acetylated chitosan surfaces in order to improve the antibodies orientation. RESULTS: Chitin surfaces were obtained by mixing small quantities of chitosan and acetic anhydride in each well of a microtiter plate. Anti-c-myc 9E10 low affinity antibody fused to ChBD was cloned and expressed in CHO cells obtaining the anti-c-myc-ChBD antibody. We found that anti c-myc-ChBD binds specifically to the chitin surfaces in comparison with anti-c-myc 9E10, which did not. Chitin surface was used to develop a sandwich ELISA to detect the chimeric human protein c-myc-GST-IL8 cloned and expressed in Escherichia coli. The ELISA assays developed on chitin surfaces were 6-fold more sensitive than those performed on standard surface with significant differences (p<0,0001). CONCLUSIONS: As shown here, acetylated chitosan surfaces improve the antibody orientation on the substrate and constitute a suitable method to replace the standard surfaces given the stability over time and the low cost of its preparation.


Assuntos
Quitosana/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Acetilação , Animais , Anticorpos/metabolismo , Células CHO , Quitina/metabolismo , Cricetulus , Proteínas de Ligação a DNA/imunologia , Escherichia coli/metabolismo , Humanos , Hibridomas , Interleucina-8/metabolismo , Sensibilidade e Especificidade , Fatores de Transcrição/imunologia
12.
Geroscience ; 42(3): 977-994, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32323139

RESUMO

Calorie restriction without malnutrition (CR) is considered as the most effective nongenetic nor pharmacological intervention that promotes healthy aging phenotypes and can extend lifespan in most model organisms. Lifelong CR leads to an increase of cytochrome b5 reductase-3 (CYB5R3) expression and activity. Overexpression of CYB5R3 confers some of the salutary effects of CR, although the mechanisms involved might be independent because key aspects of energy metabolism and lipid profiles of tissues go in opposite ways. It is thus important to study if some of the metabolic adaptations induced by CR are affected by CYB5R3 overexpression. CYB5R3 overexpression greatly preserved body and liver weight in mice under CR conditions. In liver, CR did not modify mitochondrial abundance, but lead to increased expression of mitofusin Mfn2 and TFAM, a transcription factor involved in mitochondrial biogenesis. These changes were prevented by CYB5R3 overexpression but resulted in a decreased expression of a different mitochondrial biogenesis-related transcription factor, Nrf1. In skeletal muscle, CR strongly increased mitochondrial mass, mitofusin Mfn1, and Nrf1. However, CYB5R3 mice on CR did not show increase in muscle mitochondrial mass, regardless of a clear increase in expression of TFAM and mitochondrial complexes in this tissue. Our results support that CYB5R3 overexpression significantly modifies the metabolic adaptations of mice to CR.


Assuntos
Restrição Calórica , Longevidade , Animais , Fígado , Camundongos , Camundongos Transgênicos , Músculo Esquelético
13.
J Gerontol A Biol Sci Med Sci ; 74(6): 760-769, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30010806

RESUMO

Loss of skeletal muscle mass and function is a hallmark of aging. This phenomenon has been related to a dysregulation of mitochondrial function and proteostasis. Calorie restriction (CR) has been demonstrated to delay aging and preserve function until late in life, particularly in muscle. Recently, we reported the type of dietary fat plays an important role in determining life span extension with 40% CR in male mice. In these conditions, lard fed mice showed an increased longevity compared to mice fed soybean or fish oils. In this article, we analyze the effect of 40% CR on muscle mitochondrial mass, autophagy, and mitochondrial dynamics markers in mice fed these diets. In CR fed animals, lard preserved muscle fibers structure, mitochondrial ultrastructure, and fission/fusion dynamics and autophagy, not only compared to control animals, but also compared with CR mice fed soybean and fish oils as dietary fat. We focus our discussion on dietary fatty acid saturation degree as an essential predictor of life span extension in CR mice.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Gorduras na Dieta/administração & dosagem , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Animais , Autofagia , Proteína Beclina-1/metabolismo , Biomarcadores/metabolismo , Dinaminas/metabolismo , Óleos de Peixe/administração & dosagem , GTP Fosfo-Hidrolases/metabolismo , Longevidade , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Animais , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sarcopenia/metabolismo , Óleo de Soja/administração & dosagem , Ubiquitina-Proteína Ligases/metabolismo
14.
NPJ Aging Mech Dis ; 3: 8, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649426

RESUMO

Aging is a complex phenomenon involving functional decline in multiple physiological systems. We undertook a comparative analysis of skeletal muscle from four different species, i.e. mice, rats, rhesus monkeys, and humans, at three different representative stages during their lifespan (young, middle, and old) to identify pathways that modulate function and healthspan. Gene expression profiling and computational analysis revealed that pathway complexity increases from mice to humans, and as mammals age, there is predominantly an upregulation of pathways in all species. Two downregulated pathways, the electron transport chain and oxidative phosphorylation, were common among all four species in response to aging. Quantitative PCR, biochemical analysis, mitochondrial DNA measurements, and electron microscopy revealed a conserved age-dependent decrease in mitochondrial content, and a reduction in oxidative phosphorylation complexes in monkeys and humans. Western blot analysis of key proteins in mitochondrial biogenesis discovered that (i) an imbalance toward mitochondrial fusion occurs in aged skeletal muscle and (ii) mitophagy is not overtly affected, presumably leading to the observed accumulation of abnormally large, damaged mitochondria with age. Select transcript expression analysis uncovered that the skeletal inflammatory profile differentially increases with age, but is most pronounced in humans, while increased oxidative stress (as assessed by protein carbonyl adducts and 4-hydroxynonenal) is common among all species. Expression studies also found that there is unique dysregulation of the nutrient sensing pathways among the different species with age. The identification of conserved pathways indicates common molecular mechanisms intrinsic to health and lifespan, whereas the recognition of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.

15.
Cell Metab ; 23(6): 1093-1112, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27304509

RESUMO

Calorie restriction (CR) is the most robust non-genetic intervention to delay aging. However, there are a number of emerging experimental variables that alter CR responses. We investigated the role of sex, strain, and level of CR on health and survival in mice. CR did not always correlate with lifespan extension, although it consistently improved health across strains and sexes. Transcriptional and metabolomics changes driven by CR in liver indicated anaplerotic filling of the Krebs cycle together with fatty acid fueling of mitochondria. CR prevented age-associated decline in the liver proteostasis network while increasing mitochondrial number, preserving mitochondrial ultrastructure and function with age. Abrogation of mitochondrial function negated life-prolonging effects of CR in yeast and worms. Our data illustrate the complexity of CR in the context of aging, with a clear separation of outcomes related to health and survival, highlighting complexities of translation of CR into human interventions.


Assuntos
Envelhecimento/metabolismo , Ingestão de Energia , Caracteres Sexuais , Envelhecimento/genética , Animais , Autofagia/genética , Biomarcadores/metabolismo , Restrição Calórica , Análise por Conglomerados , Ingestão de Energia/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Homeostase/genética , Sulfeto de Hidrogênio/metabolismo , Ilhotas Pancreáticas/anatomia & histologia , Fígado/metabolismo , Fígado/ultraestrutura , Longevidade/genética , Longevidade/fisiologia , Masculino , Metaboloma , Metabolômica , Camundongos , Camundongos Endogâmicos , Mitocôndrias/metabolismo , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
16.
Free Radic Biol Med ; 95: 82-95, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27016073

RESUMO

Nuclear factor E2-related factor-2 (Nrf2) is a cap'n'collar/basic leucine zipper (b-ZIP) transcription factor which acts as sensor of oxidative and electrophilic stress. Low levels of Nrf2 predispose cells to chemical carcinogenesis but a dark side of Nrf2 function also exists because its unrestrained activation may allow the survival of potentially dangerous damaged cells. Since Nrf2 inhibition may be of therapeutic interest in cancer, and a decrease of Nrf2 activity may be related with degenerative changes associated with aging, it is important to investigate how the lack of Nrf2 function activates molecular mechanisms mediating cell death. Murine Embryonic Fibroblasts (MEFs) bearing a Nrf2 deletion (Nrf2KO) displayed diminished cellular growth rate and shortened lifespan compared with wild-type MEFs. Basal rates of DNA fragmentation and histone H2A.X phosphorylation were higher in Nrf2KO MEFs, although steady-state levels of reactive oxygen species were not significantly increased. Enhanced rates of apoptotic DNA fragmentation were confirmed in liver and lung tissues from Nrf2KO mice. Apoptosis in Nrf2KO MEFs was associated with a decrease of Bcl-2 but not Bax levels, and with the release of the mitochondrial pro-apoptotic factors cytochrome c and AIF. Procaspase-9 and Apaf-1 were also increased in Nrf2KO MEFs but caspase-3 was not activated. Inhibition of XIAP increased death in Nrf2KO but not in wild-type MEFs. Mitochondrial ultrastructure was also altered in Nrf2KO MEFs. Our results support that Nrf2 deletion produces mitochondrial dysfunction associated with mitochondrial permeabilization, increasing basal apoptosis through a caspase-independent and AIF-dependent pathway.


Assuntos
Carcinogênese/genética , Mitocôndrias/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/genética , Carcinogênese/patologia , Caspase 1/genética , Proliferação de Células/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Histonas , Fígado/metabolismo , Fígado/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Fator 2 Relacionado a NF-E2/metabolismo , Permeabilidade , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína X Associada a bcl-2/genética
17.
Aging Cell ; 15(3): 477-87, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26853994

RESUMO

Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents.


Assuntos
Autofagia/efeitos dos fármacos , Restrição Calórica , Gorduras na Dieta/farmacologia , Glomérulos Renais/citologia , Glomérulos Renais/ultraestrutura , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/ultraestrutura , Animais , Biomarcadores/metabolismo , Western Blotting , Peso Corporal/efeitos dos fármacos , Creatinina/sangue , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Taxa de Filtração Glomerular/efeitos dos fármacos , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Ureia/sangue
18.
Aging Cell ; 13(5): 787-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24931715

RESUMO

Increased expression of SIRT1 extends the lifespan of lower organisms and delays the onset of age-related diseases in mammals. Here, we show that SRT2104, a synthetic small molecule activator of SIRT1, extends both mean and maximal lifespan of mice fed a standard diet. This is accompanied by improvements in health, including enhanced motor coordination, performance, bone mineral density, and insulin sensitivity associated with higher mitochondrial content and decreased inflammation. Short-term SRT2104 treatment preserves bone and muscle mass in an experimental model of atrophy. These results demonstrate it is possible to design a small molecule that can slow aging and delay multiple age-related diseases in mammals, supporting the therapeutic potential of SIRT1 activators in humans.


Assuntos
Osso e Ossos/efeitos dos fármacos , Compostos Heterocíclicos com 2 Anéis/farmacologia , Envelhecimento , Animais , Composição Corporal , Índice de Massa Corporal , Osso e Ossos/metabolismo , Dieta , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sobrevida
19.
Exp Gerontol ; 56: 77-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24704714

RESUMO

In this paper we analyzed changes in hepatocyte mitochondrial mass and ultrastructure as well as in mitochondrial markers of fission/fusion and biogenesis in mice subjected to 40% calorie restriction (CR) for 18 months versus ad libitum-fed controls. Animals subjected to CR were separated into three groups with different dietary fats: soybean oil (also in controls), fish oil and lard. Therefore, the effect of the dietary fat under CR was studied as well. Our results show that CR induced changes in hepatocyte and mitochondrial size, in the volume fraction occupied by mitochondria, and in the number of mitochondria per hepatocyte. Also, mean number of mitochondrial cristae and lengths were significantly higher in all CR groups compared with controls. Finally, CR had no remarkable effects on the expression levels of fission and fusion protein markers. However, considerable differences in many of these parameters were found when comparing the CR groups, supporting the idea that dietary fat plays a relevant role in the modulation of CR effects in aged mice.


Assuntos
Envelhecimento/patologia , Restrição Calórica , Gorduras na Dieta/administração & dosagem , Hepatócitos/ultraestrutura , Mitocôndrias Hepáticas/ultraestrutura , Fatores Etários , Envelhecimento/metabolismo , Animais , Biomarcadores/metabolismo , Tamanho Celular , Óleos de Peixe/administração & dosagem , Hepatócitos/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Dinâmica Mitocondrial , Tamanho Mitocondrial , Renovação Mitocondrial , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Óleo de Soja/administração & dosagem , Fatores de Tempo , Fatores de Transcrição/metabolismo
20.
J Gerontol A Biol Sci Med Sci ; 68(9): 1023-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23403066

RESUMO

We analyzed ultrastructural changes and markers of fission/fusion in hepatocyte mitochondria from mice submitted to 40% calorie restriction (CR) for 6 months versus ad-libitum-fed controls. To study the effects of dietary fat under CR, animals were separated into three CR groups with soybean oil (also in controls), fish oil, and lard. CR induced differential changes in hepatocyte and mitochondrial size, in the volume fraction occupied by mitochondria, and in the number of mitochondria per hepatocyte. The number of cristae per mitochondrion was significantly higher in all CR groups compared with controls. Proteins related to mitochondrial fission (Fis1 and Drp1) increased with CR, but no changes were detected in proteins involved in mitochondrial fusion (Mfn1, Mfn2, and OPA1). Although many of these changes could be attributed to CR regardless of dietary fat, changing membrane lipid composition by different fat sources did modulate the effects of CR on hepatocyte mitochondria.


Assuntos
Restrição Calórica , Gorduras na Dieta/administração & dosagem , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Proteínas Mitocondriais/metabolismo , Animais , Dinaminas/metabolismo , Óleos de Peixe/administração & dosagem , GTP Fosfo-Hidrolases/metabolismo , Longevidade/fisiologia , Masculino , Fusão de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Óleo de Soja/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA