Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Med (Lausanne) ; 11: 1380984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654834

RESUMO

Introduction: Artificial Intelligence (AI) has proven effective in classifying skin cancers using dermoscopy images. In experimental settings, algorithms have outperformed expert dermatologists in classifying melanoma and keratinocyte cancers. However, clinical application is limited when algorithms are presented with 'untrained' or out-of-distribution lesion categories, often misclassifying benign lesions as malignant, or misclassifying malignant lesions as benign. Another limitation often raised is the lack of clinical context (e.g., medical history) used as input for the AI decision process. The increasing use of Total Body Photography (TBP) in clinical examinations presents new opportunities for AI to perform holistic analysis of the whole patient, rather than a single lesion. Currently there is a lack of existing literature or standards for image annotation of TBP, or on preserving patient privacy during the machine learning process. Methods: This protocol describes the methods for the acquisition of patient data, including TBP, medical history, and genetic risk factors, to create a comprehensive dataset for machine learning. 500 patients of various risk profiles will be recruited from two clinical sites (Australia and Spain), to undergo temporal total body imaging, complete surveys on sun behaviors and medical history, and provide a DNA sample. This patient-level metadata is applied to image datasets using DICOM labels. Anonymization and masking methods are applied to preserve patient privacy. A two-step annotation process is followed to label skin images for lesion detection and classification using deep learning models. Skin phenotype characteristics are extracted from images, including innate and facultative skin color, nevi distribution, and UV damage. Several algorithms will be developed relating to skin lesion detection, segmentation and classification, 3D mapping, change detection, and risk profiling. Simultaneously, explainable AI (XAI) methods will be incorporated to foster clinician and patient trust. Additionally, a publicly released dataset of anonymized annotated TBP images will be released for an international challenge to advance the development of new algorithms using this type of data. Conclusion: The anticipated results from this protocol are validated AI-based tools to provide holistic risk assessment for individual lesions, and risk stratification of patients to assist clinicians in monitoring for skin cancer.

2.
Neuroimage Clin ; 27: 102306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32585568

RESUMO

Accurate volume measurements of the brain structures are important for treatment evaluation and disease follow-up in multiple sclerosis (MS) patients. With the aim of obtaining reproducible measurements and avoiding the intra-/inter-rater variability that manual delineations introduce, several automated brain structure segmentation strategies have been proposed in recent years. However, most of these strategies tend to be affected by the abnormal MS lesion intensities, which corrupt the structure segmentation result. To address this problem, we recently reformulated two label fusion strategies of the state of the art, improving their segmentation performance on the lesion areas. Here, we integrate these reformulated strategies in a completely automated pipeline that includes pre-processing (inhomogeneity correction and intensity normalization), atlas selection, masked registration and label fusion, and combine them with an automated lesion segmentation method of the state of the art. We study the effect of automating the lesion mask acquisition on the structure segmentation result, analyzing the output of the proposed pipeline when used in combination with manually and automatically segmented lesion masks. We further analyze the effect of those masks on the segmentation result of the original label fusion strategies when combined with the well-established pre-processing step of lesion filling. The experiments performed show that, when the original methods are used to segment the lesion-filled images, significant structure volume differences are observed in a comparison between manually and automatically segmented lesion masks. The results indicate a mean volume decrease of 1.13%±1.93 in the cerebrospinal fluid, and a mean volume increase of 0.13%±0.14 and 0.05%±0.08 in the cerebral white matter and cerebellar gray matter, respectively. On the other hand, no significant volume differences were found when the proposed automated pipeline was used for segmentation, which demonstrates its robustness against variations in the lesion mask used.


Assuntos
Encéfalo/patologia , Substância Cinzenta/patologia , Processamento de Imagem Assistida por Computador , Esclerose Múltipla/patologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Substância Branca/patologia
3.
Sci Rep ; 9(1): 6742, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043688

RESUMO

In recent years, some convolutional neural networks (CNNs) have been proposed to segment sub-cortical brain structures from magnetic resonance images (MRIs). Although these methods provide accurate segmentation, there is a reproducibility issue regarding segmenting MRI volumes from different image domains - e.g., differences in protocol, scanner, and intensity profile. Thus, the network must be retrained from scratch to perform similarly in different imaging domains, limiting the applicability of such methods in clinical settings. In this paper, we employ the transfer learning strategy to solve the domain shift problem. We reduced the number of training images by leveraging the knowledge obtained by a pretrained network, and improved the training speed by reducing the number of trainable parameters of the CNN. We tested our method on two publicly available datasets - MICCAI 2012 and IBSR - and compared them with a commonly used approach: FIRST. Our method showed similar results to those obtained by a fully trained CNN, and our method used a remarkably smaller number of images from the target domain. Moreover, training the network with only one image from MICCAI 2012 and three images from IBSR datasets was sufficient to significantly outperform FIRST with (p < 0.001) and (p < 0.05), respectively.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Interface Usuário-Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética
4.
Neuroimage Clin ; 22: 101709, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30822719

RESUMO

Intensity-based multi-atlas segmentation strategies have shown to be particularly successful in segmenting brain images of healthy subjects. However, in the same way as most of the methods in the state of the art, their performance tends to be affected by the presence of MRI visible lesions, such as those found in multiple sclerosis (MS) patients. Here, we present an approach to minimize the effect of the abnormal lesion intensities on multi-atlas segmentation. We propose a new voxel/patch correspondence model for intensity-based multi-atlas label fusion strategies that leads to more accurate similarity measures, having a key role in the final brain segmentation. We present the theory of this model and integrate it into two well-known fusion strategies: Non-local Spatial STAPLE (NLSS) and Joint Label Fusion (JLF). The experiments performed show that our proposal improves the segmentation performance of the lesion areas. The results indicate a mean Dice Similarity Coefficient (DSC) improvement of 1.96% for NLSS (3.29% inside and 0.79% around the lesion masks) and, an improvement of 2.06% for JLF (2.31% inside and 1.42% around lesions). Furthermore, we show that, with the proposed strategy, the well-established preprocessing step of lesion filling can be disregarded, obtaining similar or even more accurate segmentation results.


Assuntos
Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Atlas como Assunto , Encéfalo/patologia , Conjuntos de Dados como Assunto , Humanos , Imageamento por Ressonância Magnética/métodos
5.
Med Image Anal ; 48: 177-186, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29935442

RESUMO

Sub-cortical brain structure segmentation in Magnetic Resonance Images (MRI) has attracted the interest of the research community for a long time as morphological changes in these structures are related to different neurodegenerative disorders. However, manual segmentation of these structures can be tedious and prone to variability, highlighting the need for robust automated segmentation methods. In this paper, we present a novel convolutional neural network based approach for accurate segmentation of the sub-cortical brain structures that combines both convolutional and prior spatial features for improving the segmentation accuracy. In order to increase the accuracy of the automated segmentation, we propose to train the network using a restricted sample selection to force the network to learn the most difficult parts of the structures. We evaluate the accuracy of the proposed method on the public MICCAI 2012 challenge and IBSR 18 datasets, comparing it with different traditional and deep learning state-of-the-art methods. On the MICCAI 2012 dataset, our method shows an excellent performance comparable to the best participant strategy on the challenge, while performing significantly better than state-of-the-art techniques such as FreeSurfer and FIRST. On the IBSR 18 dataset, our method also exhibits a significant increase in the performance with respect to not only FreeSurfer and FIRST, but also comparable or better results than other recent deep learning approaches. Moreover, our experiments show that both the addition of the spatial priors and the restricted sampling strategy have a significant effect on the accuracy of the proposed method. In order to encourage the reproducibility and the use of the proposed method, a public version of our approach is available to download for the neuroimaging community.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Humanos , Imageamento Tridimensional
6.
Neuroimage Clin ; 15: 228-238, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28540179

RESUMO

In recent years, many automatic brain structure segmentation methods have been proposed. However, these methods are commonly tested with non-lesioned brains and the effect of lesions on their performance has not been evaluated. Here, we analyze the effect of multiple sclerosis (MS) lesions on three well-known automatic brain structure segmentation methods, namely, FreeSurfer, FIRST and multi-atlas fused by majority voting, which use learning-based, deformable and atlas-based strategies, respectively. To perform a quantitative analysis, 100 synthetic images of MS patients with a total of 2174 lesions are simulated on two public databases with available brain structure ground truth information (IBSR18 and MICCAI'12). The Dice similarity coefficient (DSC) differences and the volume differences between the healthy and the simulated images are calculated for the subcortical structures and the brainstem. We observe that the three strategies are affected when lesions are present. However, the effects of the lesions do not follow the same pattern; the lesions either make the segmentation method underperform or surprisingly augment the segmentation accuracy. The obtained results show that FreeSurfer is the method most affected by the presence of lesions, with DSC differences (generated - healthy) ranging from - 0.11 ± 0.54 to 9.65 ± 9.87, whereas FIRST tends to be the most robust method when lesions are present (- 2.40 ± 5.54 to 0.44 ± 0.94). Lesion location is not important for global strategies such as FreeSurfer or majority voting, where structure segmentation is affected wherever the lesions exist. On the other hand, FIRST is more affected when the lesions are overlaid or close to the structure of analysis. The most affected structure by the presence of lesions is the nucleus accumbens (from - 1.12 ± 2.53 to 1.32 ± 4.00 for the left hemisphere and from - 2.40 ± 5.54 to 9.65 ± 9.87 for the right hemisphere), whereas the structures that show less variation include the thalamus (from 0.03 ± 0.35 to 0.74 ± 0.89 and from - 0.48 ± 1.08 to - 0.04 ± 0.22) and the brainstem (from - 0.20 ± 0.38 to 1.03 ± 1.31). The three segmentation approaches are affected by the presence of MS lesions, which demonstrates that there exists a problem in the automatic segmentation methods of the deep gray matter (DGM) structures that has to be taken into account when using them as a tool to measure the disease progression.


Assuntos
Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Simulação por Computador , Humanos
7.
Neuroimage ; 155: 159-168, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28435096

RESUMO

In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is trained to be more sensitive revealing possible candidate lesion voxels while the second network is trained to reduce the number of misclassified voxels coming from the first network. This cascaded CNN architecture tends to learn well from a small (n≤35) set of labeled data of the same MRI contrast, which can be very interesting in practice, given the difficulty to obtain manual label annotations and the large amount of available unlabeled Magnetic Resonance Imaging (MRI) data. We evaluate the accuracy of the proposed method on the public MS lesion segmentation challenge MICCAI2008 dataset, comparing it with respect to other state-of-the-art MS lesion segmentation tools. Furthermore, the proposed method is also evaluated on two private MS clinical datasets, where the performance of our method is also compared with different recent public available state-of-the-art MS lesion segmentation methods. At the time of writing this paper, our method is the best ranked approach on the MICCAI2008 challenge, outperforming the rest of 60 participant methods when using all the available input modalities (T1-w, T2-w and FLAIR), while still in the top-rank (3rd position) when using only T1-w and FLAIR modalities. On clinical MS data, our approach exhibits a significant increase in the accuracy segmenting of WM lesions when compared with the rest of evaluated methods, highly correlating (r≥0.97) also with the expected lesion volume.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Esclerose Múltipla/diagnóstico por imagem , Redes Neurais de Computação , Neuroimagem/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
8.
Med Image Anal ; 35: 446-457, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598104

RESUMO

Over the last few years, the increasing interest in brain tissue volume measurements on clinical settings has led to the development of a wide number of automated tissue segmentation methods. However, white matter lesions are known to reduce the performance of automated tissue segmentation methods, which requires manual annotation of the lesions and refilling them before segmentation, which is tedious and time-consuming. Here, we propose a new, fully automated T1-w/FLAIR tissue segmentation approach designed to deal with images in the presence of WM lesions. This approach integrates a robust partial volume tissue segmentation with WM outlier rejection and filling, combining intensity and probabilistic and morphological prior maps. We evaluate the performance of this method on the MRBrainS13 tissue segmentation challenge database, which contains images with vascular WM lesions, and also on a set of Multiple Sclerosis (MS) patient images. On both databases, we validate the performance of our method with other state-of-the-art techniques. On the MRBrainS13 data, the presented approach was at the time of submission the best ranked unsupervised intensity model method of the challenge (7th position) and clearly outperformed the other unsupervised pipelines such as FAST and SPM12. On MS data, the differences in tissue segmentation between the images segmented with our method and the same images where manual expert annotations were used to refill lesions on T1-w images before segmentation were lower or similar to the best state-of-the-art pipeline incorporating automated lesion segmentation and filling. Our results show that the proposed pipeline achieved very competitive results on both vascular and MS lesions. A public version of this approach is available to download for the neuro-imaging community.


Assuntos
Automação/métodos , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Substância Branca/patologia , Algoritmos , Humanos , Esclerose Múltipla/patologia
9.
Artif Intell Med ; 73: 45-69, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27926381

RESUMO

BACKGROUND AND OBJECTIVES: Automatic brain structures segmentation in magnetic resonance images has been widely investigated in recent years with the goal of helping diagnosis and patient follow-up in different brain diseases. Here, we present a review of the state-of-the-art of automatic methods available in the literature ranging from structure specific segmentation methods to whole brain parcellation approaches. METHODS: We divide first the algorithms according to their target structures and then we propose a general classification based on their segmentation strategy, which includes atlas-based, learning-based, deformable, region-based and hybrid methods. We further discuss each category's strengths and weaknesses and analyze its performance in segmenting different brain structures providing a qualitative and quantitative comparison. RESULTS: We compare the results of the analyzed works for the following brain structures: hippocampus, thalamus, caudate nucleus, putamen, pallidum, amygdala, accumbens, lateral ventricles, and brainstem. The structures on which more works have focused on are the hippocampus and the caudate nucleus. In general, the accumbens (0.69 mean DSC) is the most difficult structure to segment whereas the structures that seem to get the best results are the brainstem, closely followed by the thalamus and the putamen with 0.88, 0.87 and 0.86 mean DSC, respectively. Atlas-based approaches achieve good results when segmenting the hippocampus (DSC between 0.75 and 0.90), thalamus (0.88-0.92) and lateral ventricles (0.83-0.93), while deformable methods perform good for caudate nucleus (0.84-0.91) and putamen segmentation (0.86-0.89). CONCLUSIONS: There is not yet a single automatic segmentation approach that can emerge as a standard for the clinical practice, providing accurate brain structures segmentation. Future trends need to focus on combining multi-atlas methods with learning-based or deformable approaches. Employing atlases to provide spatial robustness and modeling the structures appearance with supervised classifiers or Active Appearance Models could lead to improved segmentation results.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Atlas como Assunto , Hipocampo/diagnóstico por imagem , Humanos
10.
Front Neuroinform ; 10: 33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570507

RESUMO

Brain magnetic resonance imaging provides detailed information which can be used to detect and segment white matter lesions (WML). In this work we propose an approach to automatically segment WML in Lupus patients by using T1w and fluid-attenuated inversion recovery (FLAIR) images. Lupus WML appear as small focal abnormal tissue observed as hyperintensities in the FLAIR images. The quantification of these WML is a key factor for the stratification of lupus patients and therefore both lesion detection and segmentation play an important role. In our approach, the T1w image is first used to classify the three main tissues of the brain, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), while the FLAIR image is then used to detect focal WML as outliers of its GM intensity distribution. A set of post-processing steps based on lesion size, tissue neighborhood, and location are used to refine the lesion candidates. The proposal is evaluated on 20 patients, presenting qualitative, and quantitative results in terms of precision and sensitivity of lesion detection [True Positive Rate (62%) and Positive Prediction Value (80%), respectively] as well as segmentation accuracy [Dice Similarity Coefficient (72%)]. Obtained results illustrate the validity of the approach to automatically detect and segment lupus lesions. Besides, our approach is publicly available as a SPM8/12 toolbox extension with a simple parameter configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA