Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 165(2): 357-373, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37178737

RESUMO

BACKGROUND & AIMS: The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS: An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS: Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS: Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.


Assuntos
Adenocarcinoma , Resistencia a Medicamentos Antineoplásicos , Masculino , Animais , Camundongos , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Recombinação Homóloga , Ciclo Celular , Instabilidade Genômica , Genômica , Instabilidade Cromossômica/genética , Desoxirribonucleases/genética , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA