Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 824: 153802, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35150681

RESUMO

Aboveground net primary productivity (ANPP) of an ecosystem is among the most important metrics of valued ecosystem services. Measuring the efficiency scores of ecological production (ESEP) based on ANPP using relevant variables is valuable for identifying inefficient sites. The efficiency scores computed by the Data Envelopment Analysis (DEA) may be influenced by the number of input variables incorporated into the models and two DEA settings-orientations and returns-to-scales (RTSs). Therefore, the objectives were threefold to: (1) identify soil-environmental variables relevant to ANPP, (2) assess the sensitivity of ESEP to the number of input variables and DEA settings, and (3) assess local management relations with ESEP. The ANPP rates were calculated for pine forests in the southeastern U.S. where 10 management types were used. This was followed by an all-relevant variable selection technique based on 696 variables that cover biotic, pedogenic, climatic, geological, and topographical factors. Five minimal-optimal variable selection techniques were further applied to create five parsimonious sets that contain a different number of variables used as DEA inputs. After setting ANPP as the output variable, two DEA orientations (input/output) and six RTS were applied to compute ESEP. The variable selection methods succeeded in objectively identifying the major factors relevant to ANPP variation. The site index showed the highest correlation with ANPP (r = 0.39), while various precipitation factors were negatively correlated (r = - 0.15~ - 0.29, p < 0.01). Parsimonious ESEP models observed a decrease in score variances as the number of input variables increased. Various RTS produced similar scores across orientations. Of the DEA settings, an output orientation with decreasing RTS produced the most progressive ESEP with large variation. Results also suggested that macro- and micronutrient fertilization is the best combination of management strategies to achieve high ESEP. This holistic benchmark approach can be applied to other ecological functions in diverse regions.


Assuntos
Ecossistema , Solo , Florestas , Sudeste dos Estados Unidos
2.
Proc Natl Acad Sci U S A ; 117(9): 5059-5066, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32041869

RESUMO

The radiation of angiosperms led to the emergence of the vast majority of today's plant species and all our major food crops. Their extraordinary diversification occurred in conjunction with the evolution of a more efficient vascular system for the transport of water, composed of vessel elements. The physical dimensions of these water-conducting specialized cells have played a critical role in angiosperm evolution; they determine resistance to water flow, influence photosynthesis rate, and contribute to plant stature. However, the genetic factors that determine their dimensions are unclear. Here we show that a previously uncharacterized gene, ENLARGED VESSEL ELEMENT (EVE), contributes to the dimensions of vessel elements in Populus, impacting hydraulic conductivity. Our data suggest that EVE is localized in the plasma membrane and is involved in potassium uptake of differentiating xylem cells during vessel development. In plants, EVE first emerged in streptophyte algae, but expanded dramatically among vessel-containing angiosperms. The phylogeny, structure and composition of EVE indicates that it may have been involved in an ancient horizontal gene-transfer event.


Assuntos
Magnoliopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo , Evolução Biológica , Membrana Celular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotossíntese , Phycodnaviridae , Plantas Geneticamente Modificadas , Potássio/metabolismo , Água/metabolismo , Xilema/citologia , Xilema/metabolismo
3.
Glob Chang Biol ; 23(11): 4689-4705, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28386943

RESUMO

Climate projections from 20 downscaled global climate models (GCMs) were used with the 3-PG model to predict the future productivity and water use of planted loblolly pine (Pinus taeda) growing across the southeastern United States. Predictions were made using Representative Concentration Pathways (RCP) 4.5 and 8.5. These represent scenarios in which total radiative forcing stabilizes before 2100 (RCP 4.5) or continues increasing throughout the century (RCP 8.5). Thirty-six sites evenly distributed across the native range of the species were used in the analysis. These sites represent a range in current mean annual temperature (14.9-21.6°C) and precipitation (1,120-1,680 mm/year). The site index of each site, which is a measure of growth potential, was varied to represent different levels of management. The 3-PG model predicted that aboveground biomass growth and net primary productivity will increase by 10%-40% in many parts of the region in the future. At cooler sites, the relative growth increase was greater than at warmer sites. By running the model with the baseline [CO2 ] or the anticipated elevated [CO2 ], the effect of CO2 on growth was separated from that of other climate factors. The growth increase at warmer sites was due almost entirely to elevated [CO2 ]. The growth increase at cooler sites was due to a combination of elevated [CO2 ] and increased air temperature. Low site index stands had a greater relative increase in growth under the climate change scenarios than those with a high site index. Water use increased in proportion to increases in leaf area and productivity but precipitation was still adequate, based on the downscaled GCM climate projections. We conclude that an increase in productivity can be expected for a large majority of the planted loblolly pine stands in the southeastern United States during this century.


Assuntos
Florestas , Pinus taeda/crescimento & desenvolvimento , Biomassa , Mudança Climática , Folhas de Planta , Sudeste dos Estados Unidos , Temperatura , Água
4.
Ecol Appl ; 27(1): 244-259, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052499

RESUMO

Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from <1 Mg C/ha to 74 Mg C/ha and comprised <1% to 39% of ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management.


Assuntos
Biomassa , Sequestro de Carbono , Florestas , Pinus/fisiologia , Árvores/fisiologia , Sudeste dos Estados Unidos , Fatores de Tempo
5.
Tree Physiol ; 30(3): 376-92, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20071360

RESUMO

The effect of water availability on water relations of 11-year-old loblolly pine stands was studied over two growing seasons in material from two contrasting seed sources. Increasing soil water availability via irrigation increased transpiration rate, and maximum daily transpiration rate on irrigated plots was similar for both seasons, reaching values of 4.3 mm day(-)(1). Irrigation also changed soil water extraction patterns. In the rain-fed control plots, 73% of the average daily transpiration was extracted from the upper 0.75 m of the soil profile. Under irrigated conditions, 92% of transpired water was extracted from the upper 0.75 m of soil, with 79% of transpired water coming from the upper 0.35 m of the profile; only 10% of total transpiration in this treatment was extracted from the soil below 1 m. There was an irrigation x seed source interaction in the response of canopy conductance to water vapor (G(C)) to vapor pressure deficit (D). Under water-limited conditions, trees from the South Carolina seed source (SC) had stronger stomatal control than trees from the Florida seed source (FL), but this difference was not present when water was not limiting. The transpiration-induced water potential gradient from roots to shoots (DeltaPsi) was relatively constant across treatments (P = 0.52) and seed sources (P = 0.72), averaging 0.75 MPa. This reflects strong stomatal control that maintains relatively constant DeltaPsi but at the same time allows leaf water potential (Psi(l)) to fluctuate dramatically in synchrony with soil water potential (Psi(s)). The two seed sources evaluated also showed differences in foliar N and delta(13)C, possibly reflecting differences in adaptation to ambient humidity and water availability regimes in their respective ranges. These differences among seed sources under different water availability scenarios may be informative to natural resource managers and breeders as they design tree improvement and genetic deployment programs for future climate scenarios. For example, the increased stomatal control of SC under decreased soil moisture availability may make this taxon a more conservative deployment choice than FL under future, drier climate scenarios but perhaps at the risk of lower productivity.


Assuntos
Pinus/genética , Pinus/fisiologia , Água/metabolismo , Folhas de Planta/fisiologia , Solo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA