RESUMO
Whole-exome sequencing of two unrelated kindreds with systemic autoimmune disease featuring antinuclear antibodies with IgG4 elevation uncovered an identical ultrarare heterozygous TNIP1Q333P variant segregating with disease. Mice with the orthologous Q346P variant developed antinuclear autoantibodies, salivary gland inflammation, elevated IgG2c, spontaneous germinal centers and expansion of age-associated B cells, plasma cells and follicular and extrafollicular helper T cells. B cell phenotypes were cell-autonomous and rescued by ablation of Toll-like receptor 7 (TLR7) or MyD88. The variant increased interferon-ß without altering nuclear factor kappa-light-chain-enhancer of activated B cells signaling, and impaired MyD88 and IRAK1 recruitment to autophagosomes. Additionally, the Q333P variant impaired TNIP1 localization to damaged mitochondria and mitophagosome formation. Damaged mitochondria were abundant in the salivary epithelial cells of Tnip1Q346P mice. These findings suggest that TNIP1-mediated autoimmunity may be a consequence of increased TLR7 signaling due to impaired recruitment of downstream signaling molecules and damaged mitochondria to autophagosomes and may thus respond to TLR7-targeted therapeutics.
Assuntos
Doenças Autoimunes , Proteínas de Ligação a DNA , Imunoglobulina G , Fator 88 de Diferenciação Mieloide , Receptor 7 Toll-Like , Animais , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Humanos , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Transdução de Sinais , Mitocôndrias/metabolismo , Sequenciamento do Exoma , Anticorpos Antinucleares/imunologia , Linfócitos B/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Centro Germinativo/imunologia , Linhagem , Glândulas Salivares/imunologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Glicoproteínas de MembranaRESUMO
Regulatory T (Treg) cells represent a specialized lineage of suppressive CD4+ T cells whose functionality is critically dependent on their ability to migrate to and dwell in the proximity of cells they control. Here we show that continuous expression of the chemokine receptor CXCR4 in Treg cells is required for their ability to accumulate in the bone marrow (BM). Induced CXCR4 ablation in Treg cells led to their rapid depletion and consequent increase in mature B cells, foremost the B-1 subset, observed exclusively in the BM without detectable changes in plasma cells or hematopoietic stem cells or any signs of systemic or local immune activation elsewhere. Dysregulation of BM B-1 B cells was associated with a highly specific increase in IgM autoantibodies and total serum IgM levels. Thus, Treg cells control autoreactive B-1 B cells in a CXCR4-dependent manner. These findings have significant implications for understanding the regulation of B cell autoreactivity and malignancies.
Assuntos
Subpopulações de Linfócitos B , Linfócitos T Reguladores , Subpopulações de Linfócitos B/metabolismo , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Imunoglobulina M/metabolismo , Receptores CXCR4/metabolismoRESUMO
Regulatory T cells prevent the emergence of autoantibodies and excessive IgE, but the precise mechanisms are unclear. Here, we show that BCL6-expressing Tregs, known as follicular regulatory T (Tfr) cells, produce abundant neuritin protein that targets B cells. Mice lacking Tfr cells or neuritin in Foxp3-expressing cells accumulated early plasma cells in germinal centers (GCs) and developed autoantibodies against histones and tissue-specific self-antigens. Upon immunization, these mice also produced increased plasma IgE and IgG1. We show that neuritin is taken up by B cells, causes phosphorylation of numerous proteins, and dampens IgE class switching. Neuritin reduced differentiation of mouse and human GC B cells into plasma cells, downregulated BLIMP-1, and upregulated BCL6. Administration of neuritin to Tfr-deficient mice prevented the accumulation of early plasma cells in GCs. Production of neuritin by Tfr cells emerges as a central mechanism to suppress B cell-driven autoimmunity and IgE-mediated allergies.
Assuntos
Linfócitos B/imunologia , Proteínas do Tecido Nervoso/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Autoanticorpos/imunologia , Autoimunidade , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Ligadas por GPI/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Histonas/imunologia , Switching de Imunoglobulina , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Plasmócitos/citologia , Plasmócitos/imunologia , Plasmócitos/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismoRESUMO
Class-switch recombination (CSR) is a DNA recombination process that replaces the immunoglobulin (Ig) constant region for the isotype that can best protect against the pathogen. Dysregulation of CSR can cause self-reactive BCRs and B cell lymphomas; understanding the timing and location of CSR is therefore important. Although CSR commences upon T cell priming, it is generally considered a hallmark of germinal centers (GCs). Here, we have used multiple approaches to show that CSR is triggered prior to differentiation into GC B cells or plasmablasts and is greatly diminished in GCs. Despite finding a small percentage of GC B cells expressing germline transcripts, phylogenetic trees of GC BCRs from secondary lymphoid organs revealed that the vast majority of CSR events occurred prior to the onset of somatic hypermutation. As such, we have demonstrated the existence of IgM-dominated GCs, which are unlikely to occur under the assumption of ongoing switching.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Switching de Imunoglobulina , Plasmócitos/imunologia , Linfoma Plasmablástico/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Receptores de Antígenos de Linfócitos B/metabolismoRESUMO
Mucosal lymphoid tissues such as human tonsil are colonized by bacteria and exposed to ingested and inhaled antigens, requiring tight regulation of immune responses. Antibody responses are regulated by follicular helper T (TFH) cells and FOXP3+ follicular regulatory T (TFR) cells. Here we describe a subset of human tonsillar follicular T cells identified by expression of TFH markers and CD25 that are the main source of follicular T (TF) cell-derived IL-10. Despite lack of FOXP3 expression, CD25+ TF cells resemble T reg cells in high CTLA4 expression, low IL-2 production, and their ability to repress T cell proliferation. CD25+ TF cell-derived IL-10 dampens induction of B cell class-switching to IgE. In children, circulating total IgE titers were inversely correlated with the frequencies of tonsil CD25+ TF cells and IL-10-producing TF cells but not with total T reg cells, TFR, or IL-10-producing T cells. Thus, CD25+ TF cells emerge as a subset with unique T and B cell regulatory activities that may help prevent atopy.
Assuntos
Interleucina-10/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos B/imunologia , Antígeno CTLA-4/metabolismo , Proliferação de Células , Células Cultivadas , Criança , Fatores de Transcrição Forkhead/metabolismo , Humanos , Switching de Imunoglobulina/imunologia , Imunoglobulina E/sangue , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Linfonodos/imunologia , Linfonodos/patologia , Ativação Linfocitária , Mesentério , Tonsila Palatina/imunologia , Tonsila Palatina/patologiaRESUMO
Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (TFH) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human TFH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. TFH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human TFH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.
Assuntos
Linfócitos B/imunologia , Dopamina/metabolismo , Centro Germinativo/imunologia , Sinapses Imunológicas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Ligante de CD40/metabolismo , Criança , Cromogranina B/metabolismo , Feminino , Centro Germinativo/citologia , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Camundongos , Modelos Imunológicos , Neurotransmissores/metabolismo , Vesículas Secretórias/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Regulação para CimaRESUMO
Current HIV vaccines are poor inducers of neutralizing antibodies (nAbs). A recent study in Cell Reports used serial fine-needle aspirates from rhesus macaque lymph nodes following HIV-1 surface envelope glycoprotein (Env) trimer immunization, generating a substantial production of HIV-1 nAbs. A remarkable correlation was found between antibody titers and a high frequency and ratio of germinal center B and T follicular helper (TFH) lymphocytes.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/imunologia , Centro Germinativo/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Vacinas contra a AIDS/uso terapêutico , Animais , Centro Germinativo/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Linfócitos/imunologia , Linfócitos/virologia , Macaca mulatta , Produtos do Gene env do Vírus da Imunodeficiência Humana/uso terapêuticoRESUMO
Histone post-translational modifications and nucleosome remodeling are coordinate events involved in eukaryotic transcriptional regulation. There are relatively few data on the time course with which these events occur in individual nucleosomes. As a contribution to fill this gap, we first describe the nature and time course of structural changes in the nucleosomes -2, -1, and +1 of the murine Egr1 gene upon induction. To initiate the transient activation of the gene, we used the stimulation of MLP29 cells with phorbol esters and the in vivo activation after partial hepatectomy. In both models, nucleosomes -1 and +1 are partially evicted, whereas nucleosomes +1 and -2 slide downstream during transcription. The sliding of the latter nucleosome allows the EGR1 protein to bind its site, resulting in the repression of the gene. To decide whether EGR1 is involved in the sliding of nucleosome -2, Egr1 was knocked down. In the absence of detectable EGR1, the nucleosome still slides and remains downstream longer than in control cells, suggesting that the product of the gene may be rather involved in the returning of the nucleosome to the basal position. Moreover, the presence of eight epigenetic histone marks has been determined at a mononucleosomal level in that chromatin region. H3S10phK14ac, H3K4me3, H3K9me3, and H3K27me3 are characteristic of nucleosome +1, and H3K9ac and H4K16ac are mainly found in nucleosome -1, and H3K27ac predominates in nucleosomes -2 and -1. The temporal changes in these marks suggest distinct functions for some of them, although changes in H3K4me3 may result from histone turnover.
Assuntos
Proteína 1 de Resposta de Crescimento Precoce/genética , Hepatócitos/metabolismo , Histonas/metabolismo , Fígado/metabolismo , Nucleossomos/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Proteína 1 de Resposta de Crescimento Precoce/deficiência , Hepatectomia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Histonas/genética , Fígado/citologia , Fígado/cirurgia , Regeneração Hepática/genética , Camundongos , Camundongos Knockout , Nucleossomos/química , Regiões Promotoras Genéticas , Acetato de Tetradecanoilforbol/farmacologia , Fatores de Tempo , Transcrição GênicaRESUMO
DNA vaccines have emerged as an attractive strategy to promote protective cellular and humoral immunity against the encoded antigen. DNA vaccines are easy to generate, inexpensive to produce and purify at large-scale, highly stable and safe. In addition, plasmids used for DNA vaccines act as powerful "danger signals" by stimulating several DNA-sensing innate immune receptors that promote the induction of protective adaptive immunity. The induction of tumor-specific immune responses represents a major challenge for DNA vaccines because most of tumor-associated antigens are normal non-mutated self-antigens. As a consequence, induction of potentially self-reactive T cell responses against such poorly immunogenic antigens is controlled by mechanisms of central and peripheral tolerance as well as tumor-induced immunosuppression. Although several DNA vaccines against cancer have reached clinical testing, disappointing results have been observed. Therefore, the development of new adjuvants that strongly stimulate the induction of antitumor T cell immunity and counteract immune-suppressive regulation is an attractive approach to enhance the potency of DNA vaccines and overcome tumor-associated tolerance. Understanding the DNA-sensing signaling pathways of innate immunity that mediate the induction of T cell responses elicited by DNA vaccines represents a unique opportunity to develop novel adjuvants that enhance vaccine potency. The advance of DNA adjuvants needs to be complemented with the development of potent delivery systems, in order to step toward successful clinical application. Here, we briefly discuss recent evidence showing how to harness DNA-induced immune response to improve the potency of cancer vaccines and counteract tumor-associated tolerance.