Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(24): 31576-31585, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38859578

RESUMO

Hybrid core-shell nanoparticles with metal cores and conductive polymer shells yield materials that are sinter-free and highly conductive but mechanically weak. Conventional composites of such nanoparticles are electrically insulating. Here, we introduce microscale phase-separated nanocomposites of hybrid gold-PEDOT:PPS particles in insulating poly(vinyl alcohol) (PVA). They combine electrical conductivities of up to 2.1 × 105 S/m at 10 vol % PVA with increased mechanical adhesion on polyethylene terephthalate and glass substrates. We studied the effects of the PVA molecular weight, hydrolyzation degree, and volume fraction. Composites with 10 vol % highly hydrolyzed PVA at a MW of 89-98 kDa had the highest conductivities and stabilities; highly hydrolyzed PVA even increased the conductivity of the hybrid particle layers. We propose the formation of hydrogen bonds between PVA and PEDOT:PSS that lead to demixing and the formation of stable, structured composites. Finally, we demonstrated the inkjet-printability of inks containing PVA in water with viscosities of 1.6-2.0 Pa s at 50.1 s-1 and prepared bending-resistant electrical leads.

2.
Nanoscale Adv ; 5(16): 4124-4132, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37560420

RESUMO

We report on the unusual, advantageous ageing of flexible transparent electrodes (FTEs) that were self-assembled from oleylamine-capped gold nanospheres (AuNPs) by direct nanoimprinting of inks with different particle concentrations (cAu = 3 mg mL-1 to 30 mg mL-1). The resulting lines were less than 2.5 µm wide and consisted of disordered particle assemblies. Small-Angle X-ray Scattering confirmed that particle packing did not change with ink concentration. Plasma sintering converted the printed structures into lines with a thin, electrically conductive metal shell and a less conductive hybrid core. We studied the opto-electronic performance directly after plasma sintering and after fourteen days of storage at 22 °C and 55% rH in the dark. The mean optical transmittance T̄400-800 in the range from 400 nm to 800 nm increased by up to ≈ 3%, while the sheet resistance Rsh strongly decreased by up to ≈ 82% at all concentrations. We correlated the changes with morphological changes visible in scanning and transmission electron microscopy and identified two sequential ageing stages: (I) post-plasma relaxation effects in and consolidation of the shell, and (II) particle re-organization, de-mixing, coarsening, and densification of the core with plating of Au from the core onto the shell, followed by solid-state de-wetting (ink concentrations cAu < 15 mg mL-1) or stability (cAu ≥ 15 mg mL-1). The plating of Au from the hybrid core improved the FTEs' Figure of Merit FOM = T̄400-800·Rsh-1 by up to ≈ 5.8 times and explains the stable value of ≈ 3.3%·Ωsq-1 reached after 7 days of ageing at cAu = 30 mg mL-1.

3.
Nanoscale ; 15(16): 7526-7536, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022092

RESUMO

Hybrid dielectrics were prepared from dispersions of nanoparticles with gold cores (diameters from 2.9 nm to 8.2 nm) and covalently bound thiol-terminated polystyrene shells (5000 Da and 11 000 Da) in toluene. Their microstructure was investigated with small angle X-ray scattering and transmission electron microscopy. The particles arranged in nanodielectric layers with either face-centered cubic or random packing, depending on the ligand length and core diameter. Thin film capacitors were prepared by spin-coating inks on silicon substrates, contacted with sputtered aluminum electrodes, and characterized with impedance spectroscopy between 1 Hz and 1 MHz. The dielectric constants were dominated by polarization at the gold-polystyrene interfaces that we could precisely tune via the core diameter. There was no difference in the dielectric constant between random and supercrystalline particle packings, but the dielectric losses depended on the layer structure. A model that combines Maxwell-Wagner-Sillars theory and percolation theory described the relationship of the specific interfacial area and the dielectric constant quantitatively. The electric breakdown of the nanodielectric layers sensitively depended on particle packing. A highest breakdown field strength of 158.7 MV m-1 was found for the sample with 8.2 nm cores and short ligands that had a face-centered cubic structure. Breakdown apparently is initiated at the microscopic maxima of the electric field that depends on particle packing. The relevance of the results for industrially produced devices was demonstrated on inkjet printed thin film capacitors with an area of 0.79 mm2 on aluminum coated PET foils that retained their capacity of 1.24 ± 0.01 nF@10 kHz during 3000 bending cycles.

4.
Nanoscale Adv ; 4(16): 3370-3380, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131708

RESUMO

We directed the self-assembly of nanoscale colloids via direct nanoimprint lithography to create flexible transparent electrodes (FTEs) with metal line widths below 3 µm in a roll-to-roll-compatible process. Gold nanowires and nanospheres with oleylamine shells were imprinted with soft silicone stamps, arranged into grids of parallel lines, and converted into metal lines in a plasma process. We studied the hierarchical structure and opto-electronic performance of the resulting grids as a function of particle geometry and concentration. The performance in terms of optical transmittance was dominated by the line width. Analysis of cross-sections indicated that plasma sintering only partially removed the insulating ligands and formed lines with thin conductive shells and a non-conductive core. We provide evidence that the self-assembly of high-aspect nanowires can compensate for defects of the stamp and substrate irregularities during imprinting, while spheres cannot. The wire-based electrodes thus outperformed the sphere-based electrodes at ratios of optical transmittance to sheet resistance of up to ≈ 0.9% Ωsq -1, while spheres only reached ≈ 0.55% Ωsq -1.

5.
Nanoscale Adv ; 4(18): 3940-3949, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133343

RESUMO

We study the stability of flexible transparent electrodes (FTEs) that were self-assembled from ultra-thin gold nanowires (AuNW) by direct nanoimprinting of inks with different particle concentrations (1 to 10 mg mL-1). The resulting lines were less than 3 µm wide and contained bundles of AuNW with oleylamine (OAm) ligand shells. Small-angle X-ray scattering confirmed a concentration-independent bundle structure. Plasma sintering converted the wire assemblies into lines with a thin metal shell that contributes most to electrical conductivity and covers a hybrid core. We studied the relative change in sheet resistance and the morphology of the FTEs with time. The sheet resistance increased at all concentrations, but at different rates. The metal shell aged by de-wetting and pore formation. The hybrid core de-mixed and densified, which led to a partial collapse of the shell. Residual organics migrated through the shell via its pores. Lines formed at low concentration (c Au = 2 to 3 mg mL-1) contained less residual organics and aged slower than those formed at high c Au ≥ 5 mg mL-1. We passivated the conductive shell with thin, adsorbed layers of PEDOT:PSS and found that it decelerated degradation by slowing surface diffusion and hindering further rupture of the shell. Thick capping layers prevented degradation entirely and stopped pore formation.

7.
Inorg Chem ; 60(22): 17103-17113, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34735769

RESUMO

We describe the gram-scale synthesis of hybrid gold nanoparticles with a shell of conductive polymers. A large-scale synthesis of hexadecyltrimethylammonium bromide (CTAB)-capped gold nanoparticles (AuNP@CTAB) was followed by ligand exchange with conductive polymers based on thiophene in a 10 L reactor equipped with a jacket to ensure a constant temperature of 40 °C and a mechanical stirrer. Slow and controlled reduction of the gold precursors and the presence of small amounts of silver nitrate are revealed to be the critical synthesis variables to obtain particles with a sufficiently narrow size distribution. Batches of approximately 10 g of faceted AuNP@CTAB with tunable average particle sizes from 54 to 85 nm were obtained per batch. Ligand exchange with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) in the same reactor then yielded hybrid Au@PEDOT:PSS nanoparticles. They were used to formulate sinter-free inks for the inkjet printing of conductive structures without the need for a sintering step.

8.
J Chem Phys ; 155(12): 124902, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598569

RESUMO

We examine network formation and percolation of carbon black by means of Monte Carlo simulations and experiments. In the simulation, we model carbon black by rigid aggregates of impenetrable spheres, which we obtain by diffusion-limited aggregation. To determine the input parameters for the simulation, we experimentally characterize the micro-structure and size distribution of carbon black aggregates. We then simulate suspensions of aggregates and determine the percolation threshold as a function of the aggregate size distribution. We observe a quasi-universal relation between the percolation threshold and a weighted average radius of gyration of the aggregate ensemble. Higher order moments of the size distribution do not have an effect on the percolation threshold. We conclude further that the concentration of large carbon black aggregates has a stronger influence on the percolation threshold than the concentration of small aggregates. In the experiment, we disperse the carbon black in a polymer matrix and measure the conductivity of the composite. We successfully test the hypotheses drawn from simulation by comparing composites prepared with the same type of carbon black before and after ball milling, i.e., on changing only the distribution of aggregate sizes in the composites.

9.
Adv Mater ; 33(41): e2103087, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34425032

RESUMO

A new type of hybrid core-shell nanoparticle dielectric that is suitable for inkjet printing is introduced. Gold cores (dcore  ≈ 4.5 nm diameter) are covalently grafted with thiol-terminated polystyrene (Mn  = 11000 Da and Mn  = 5000 Da) and used as inks to spin-coat and inkjet-print dielectric films. The dielectric layers have metal volume fractions of 5 to 21 vol% with either random or face-centered-cubic structures depending on the polymer length and grafting density. Films with 21 vol% metal have dielectric constants of 50@1 Hz. Structural and electrical characterization using transmission electron microscopy, small-angle X-ray scattering, and impedance spectroscopy indicates that classical random capacitor-resistor network models partially describe this hybrid material but fail at high metal fractions, where the covalently attached shell prevents percolation and ensures high dielectric constants without the risk of dielectric breakdown. A comparison of disordered to ordered films indicates that the network structure affects dielectric properties less than the metal content. The applicability of the new dielectric material is demonstrated by formulating inkjet inks and printing devices. An inkjet-printed capacitor with an area of 0.79 mm2 and a 17 nm thick dielectric had a capacitance of 2.2 ± 0.1 n F @ 1 k H z .

10.
Small ; 16(25): e2000928, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32462772

RESUMO

Conductive inkjet printing with metal nanoparticles is irreversible because the particles are sintered into a continuous metal film. The resulting structures are difficult to remove or repair and prone to cracking. Here, a hybrid ink is used to obviate the sintering step and print interconnected particle networks that become highly conductive immediately after drying. It is shown that reversible conductive printing is possible on low-cost cardboard samples after applying standard paper industry coats that are adapted in terms of surface energy and porosity. The conductivity of the printed films approaches that of sintered standard inks on the same substrate, but the mobility of the hybrid particle film makes them less sensitive to cracks during bending and folding of the substrate. Damages that occur can be partially repaired by wetting the film such that particle mobility is increased and particles move to bridge insulating gaps in the film. It is demonstrated that the conductive material can be recovered from the cardboard at the end of its life time and be redispersed to recycle the particles and reuse them in conductive inks.

11.
Nano Lett ; 19(8): 5246-5252, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31251877

RESUMO

We studied the concentration-dependent agglomeration of apolar nanoparticles in different solvents. Octanethiol-stabilized gold nanoparticles (AuNPs) in evaporating liquid droplets were observed in situ using small-angle X-ray scattering. Concurrent analysis of liquid volume and particle agglomeration provided time-dependent absolute concentrations of free and agglomerated particles. All dispersions underwent an initial stage where the particle concentration increased but no agglomerates formed. Subsequently, agglomeration started at concentrations that varied by several orders of magnitude for different solvents. While agglomerates grew, the concentration of the dispersed particles remained at a constant "colloidal solubility" in most solvents. We consistently found that the colloidal stability of AuNPs decreased as cyclohexane > heptane > nonane > decane > toluene and suggest that details of the molecular interactions between solvent and ligand shell set this order.

12.
Nanoscale ; 11(14): 6538-6543, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30907898

RESUMO

Gold nanorods (AuNRs) with conductive polymer shells are interesting colloidal building blocks for electronics. Hybrid particles with AuNR cores and poly(3,4-ethylenedioxythiophene) or polystyrene sulfonate (PEDOT:PSS) shells were prepared as stable aqueous dispersions. Film formation during the drying of such dispersions is known to affect the electric conductivity of the material. We observed the mechanisms of drying in thin, spray-coated films with grazing incidence small-angle X-ray scattering (GISAXS). A sparse, uniform monolayer formed because the anisotropic shape of the AuNR inhibited "coffee-ring" effects. We used generalized two-dimensional correlation (2DC) spectroscopy to analyze the GISAXS data and to decipher the microscopic structure formation of the film during drying. Four major scattering peaks were attributed to porous PEDOT, PSS, Au, and the substrate layer. Their time-dependent intensity indicated the sequence of film formation: AuNRs with mobile shells arranged on the substrate first, and PEDOT and then PSS dried sequentially around the gold core. We discuss the final phase-separation of PEDOT:PSS on the hybrid rods.

13.
ACS Appl Mater Interfaces ; 10(7): 6079-6083, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29400942

RESUMO

Metal grids with submicron line diameters are optically transparent, mechanically flexible, and suitable materials for transparent and flexible electronics. Printing such narrow lines with dilute metal nanoparticle inks is challenging because it requires percolation throughout the particle packing. Here, we print fully connected submicron lines of 3.2 nm diameter gold nanoparticles and vary the organic ligand shell to study the relation between colloidal interactions, ligand binding to the metal core, and conductivity of the printed lines. We find that particles with repulsive potentials aid the formation of continuous lines, but the required long ligand molecules impede conductivity and need to be removed after printing. Weakly bound alkylamines provided sufficient interparticle repulsion and were easy to remove with a soft plasma treatment after printing, so that grids with a transparencies above 90% and a conductivity of 150 Ω sq-1 could be printed.

14.
ACS Nano ; 11(5): 4934-4942, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28445646

RESUMO

Hierarchical structures lend strength to natural fibers made of soft nanoscale building blocks. Intermolecular interactions connect the components at different levels of hierarchy, distribute stresses, and guarantee structural integrity under load. Here, we show that synthetic ultrathin gold nanowires with interacting ligand shells can be spun into biomimetic, free-standing microfibers. A solution spinning process first aligns the wires, then lets their ligand shells interact, and finally converts them into a hierarchical superstructure. The resulting fiber contained 80 vol % organic ligand but was strong enough to be removed from the solution, dried, and mechanically tested. Fiber strength depended on the wire monomer alignment. Shear in the extrusion nozzle was systematically changed to obtain process-structure-property relations. The degree of nanowire alignment changed breaking stresses by a factor of 1.25 and the elongation at break by a factor of 2.75. Plasma annealing of the fiber to form a solid metal shell decreased the breaking stress by 65%.

17.
Nano Lett ; 16(5): 2921-5, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-26985790

RESUMO

We fabricated flexible, transparent, and conductive metal grids as transparent conductive materials (TCM) with adjustable properties by direct nanoimprinting of self-assembling colloidal metal nanowires. Ultrathin gold nanowires (diameter below 2 nm) with high mechanical flexibility were confined in a stamp and readily adapted to its features. During drying, the wires self-assembled into dense bundles that percolated throughout the stamp. The high aspect ratio and the bundling yielded continuous, hierarchical superstructures that connected the entire mesh even at low gold contents. A soft sintering step removed the ligand barriers but retained the imprinted structure. The material exhibited high conductivities (sheet resistances down to 29 Ω/sq) and transparencies that could be tuned by changing wire concentration and stamp geometry. We obtained TCMs that are suitable for applications such as touch screens. Mechanical bending tests showed a much higher bending resistance than commercial ITO: conductivity dropped by only 5.6% after 450 bending cycles at a bending radius of 5 mm.

19.
ACS Appl Mater Interfaces ; 7(15): 7838-42, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25838194

RESUMO

Ultrathin gold nanowires (AuNWs) with diameters below 2 nm and high aspect ratios are considered to be a promising base material for transparent electrodes. To achieve the conductivity expected for this system, oleylamine must be removed. Herein we present the first study on the conductivity, optical transmission, stability, and structure of AuNW networks before and after sintering with different techniques. Freshly prepared layers consisting of densely packed AuNW bundles were insulating and unstable, decomposing into gold spheres after a few days. Plasma treatments increased the conductivity and stability, coarsened the structure, and left the optical transmission virtually unchanged. Optimal conditions reduced sheet resistances to 50 Ω/sq.

20.
ACS Appl Mater Interfaces ; 6(15): 11924-31, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25007108

RESUMO

We present a straightforward procedure of self-surface patterning with potential applications as large area gratings, invisible labeling, optomechanical transducers, or smart windows. The methodology is based in the formation of parallel micrometric crack patterns when polydimethylsiloxane foils coated with tilted nanocolumnar SiO2 thin films are manually bent. The SiO2 thin films are grown by glancing angle deposition at room temperature. The results indicate that crack spacing is controlled by the film nanostructure independently of the film thickness and bending curvature. They also show that the in-plane microstructural anisotropy of the SiO2 films due to column association perpendicular to the growth direction determines the anisotropic formation of parallel cracks along two main axes. These self-organized patterned foils are completely transparent and work as customized reversible diffraction gratings under mechanical activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA