Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38927969

RESUMO

Cancer is characterized by increased metabolic activity and vascularity, leading to temperature changes in cancerous tissues compared to normal cells. This study focused on patients with abnormal mammogram findings or a clinical suspicion of breast cancer, exclusively those confirmed by biopsy. Utilizing an ultra-high sensitivity thermal camera and prone patient positioning, we measured surface temperatures integrated with an inverse modeling technique based on heat transfer principles to predict malignant breast lesions. Involving 25 breast tumors, our technique accurately predicted all tumors, with maximum errors below 5 mm in size and less than 1 cm in tumor location. Predictive efficacy was unaffected by tumor size, location, or breast density, with no aberrant predictions in the contralateral normal breast. Infrared temperature profiles and inverse modeling using both techniques successfully predicted breast cancer, highlighting its potential in breast cancer screening.

3.
Talanta ; 93: 72-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22483879

RESUMO

The possibilities of artificial neural networks (ANNs) "soft" computing to evaluate chemical kinetic data have been studied. In the first stage, a set of "standard" kinetic curves with known parameters (rate constants and/or concentrations of the reactants), which is some kind of "normalized maps", is prepared. The database should be built according to a suitable experimental design (ED). In the second stage, such data set is then used for ANNs "learning". Afterwards, in the second stage, experimental data are evaluated and parameters of "other" kinetic curves are computed without solving anymore the system of differential equations. The combined ED-ANNs approach has been applied to solve several kinetic systems. It was also demonstrated that using ANNs, the optimization of complex chemical systems can be achieved even not knowing or determining the values of the rate constants. Moreover, the solution of differential equations is here not necessary, as well. Using ED the number of experiments can be reduced substantially. Methodology of ED-ANNs applied to multicomponent analysis shows advantages over classical methods while the knowledge of kinetic reactions is not needed. ANNs computation in kinetics is robust as shown evaluating the effect of experimental errors and it is of general applicability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA