Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8654, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606534

RESUMO

To test the feasibility of using profilometers to extract information about IOL surfaces design. A standard monofocal IOL (Tecnis 1), a monofocal IOL that provided some depth of focus (Eyhance), an extended depth of focus IOL based on refractive optics (Mini Well) and a trifocal IOL based on diffractive optics were used in this study (Tecnis Synergy). The surface topography of the IOLs was measured by using a multimode optical profilometer. Posterior surface of Tecnis 1 IOL was spherical and the anterior surface aspherical. In the Eyhance IOL, posterior surface was spherical and anterior surface did not fit to any of our reference surfaces, indicating a higher order aspheric surface design. In the Mini Well Ready IOL, a best-fit sphere surface was obtained for the second surface and a high order aspherical surface design was deduced for the first surface. The anterior surface of the Synergy IOL was aspherical and the base curve of the diffractive structure fitted very well to a spherical surface. To consider an aspheric surface as possible best-fit surface provided more information than if only best-fit spherical surface was considered. The high order aspheric surface designs employed in the IOLs studied presented differences, regarding best-fit asphere surface, higher than 1 micron. These differences were correlated with the generation of spherical aberration complex profiles (with Zernike terms higher than 4th order) and with the production of distinct amounts of depth of focus. This method was also useful to deduce the base curve of diffractive surfaces.


Assuntos
Lentes Intraoculares , Facoemulsificação , Óptica e Fotônica , Desenho de Prótese , Refração Ocular , Visão Ocular
2.
ACS Appl Mater Interfaces ; 13(32): 38061-38073, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34365790

RESUMO

In this work, a simple one-step thermal oxidation process was established to achieve a significant surface increase in {110} and {111} nanofacets on well-defined, pure and Pr-doped, ceria nanocubes. More importantly, without changing most of the bulk properties, this treatment leads to a remarkable boost of their enzymatic activities: from the oxidant (oxidase-like) to antioxidant (hydroxyl radical scavenging) as well as the paraoxon degradation (phosphatase-like) activities. Such performance improvement might be due to the thermally generated sawtoothlike {111} nanofacets and defects, which facilitate the oxygen mobility and the formation of oxygen vacancies on the surface. Finally, possible mechanisms of nanoceria as artificial enzymes have been proposed in this manuscript. Considering the potential application of ceria as artificial enzymes, this thermal treatment may enable the future design of highly efficient nanozymes without changing the bulk composition.


Assuntos
Antioxidantes/química , Cério/química , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA